精英家教网 > 初中数学 > 题目详情
已知: 在四边形ABCD中, AB⊥BC, AB=3cm BC=4cm, CD=12cm, AD=13cm, 则四边 形ABCD的面积为_______cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、已知:在四边形ABCD中,AB∥CD,AB=BC,使得四边形ABCD是菱形.还需添加一个条件,这个条件可以是
AB=CD等

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S0
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,下列四个关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°,选出其中的两个关系作为命题的题设,命题的结论:四边形ABCD是平行四边形,请写一个真命题和一个假命题.
你写的真命题是:已知:在四边形ABCD中,

求证:四边形ABCD是平行四边形.
证明:
∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形
∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形

你写的假命题是:
题设:
在四边形ABCD中,AD∥BC,AB=CD
在四边形ABCD中,AD∥BC,AB=CD

结论:四边形ABCD是平行四边形,你认为它是假命题的理由是:
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC平分∠BAD,在DA的延长线上任取一点E,连接EC,作∠ECF=
12
∠BCD,使CF与AB的延长线交于F、连接EF,请画出完整图形,探究:线段BF、EF、ED之间具有怎样的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案