精英家教网 > 初中数学 > 题目详情

【题目】某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )
A.240元
B.250元
C.280元
D.300元

【答案】A
【解析】解:设这种商品每件的进价为x元,

由题意得:330×0.8﹣x=10%x,

解得:x=240,即这种商品每件的进价为240元.
故A符合题意.

故答案为:A.

设这种商品每件的进价为x元,根据售价-进价=利润(利润=进价 ×利润率)列方程求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),

△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单

位得到△A2B2C2

(1)画出△A1B1Cl和△A2B2C2

(2)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请

写出点P1、P2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中ABBC分别为线段,CD为双曲线的一部分):

1)求出线段AB,曲线CD的解析式,并写出自变量的取值范围;

2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?

3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:点E∠AOB的平分线上一点,ED⊥OA,EC⊥OB,垂足分别为C、D.

求证:(1)OC=OD;

(2)OE是线段CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a+b=5ab=6,则(ab2的值是

A. 25B. 13C. 1D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.

(1)求证:DF⊥AC;

(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角,墙DF足够长,墙DE长为12米,现用20米长的篱笆围成一个矩形花园ABCD,点C在墙DF上,点A在墙DE上,(篱笆只围AB,BC两边).

(1)如何才能围成矩形花园的面积为75m2

(2)能够围成面积为101m2的矩形花园吗?如能说明围法,如不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列调查中:
①了解一批袋装食品是否含有防腐剂;
②了解某班学生“50 米跑”的成绩;
③了解江苏卫视“非诚勿扰”节目的收视率;
④了解一批灯泡的使用寿命.
适合用普查(全面调查)方式的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象分别与轴、轴交于点A、B,以线段AB为边在第一象限内作等腰RtABC,BAC=90°.求过B、C两点直线的解析式.

查看答案和解析>>

同步练习册答案