精英家教网 > 初中数学 > 题目详情
如图,已知平面直角坐标系中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(-3,
3
),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30°.折叠后,点O落在点O1,点C落在线段AB上的C1处,并且DO1与DC1在同一直线上.则C1的坐标是
(-2,
3
(-2,
3
分析:可过C1作x轴的垂线,由于∠ADO=∠AOC1=60°,因此可得出∠C1DC=60°,因此可在构建的直角三角形中用BC的长和∠C1DC的度数来求出C1的坐标.
解答:解:过C1作C1F⊥OC于点F,
∵∠OAD=30°,
∴∠ADO=∠ADO1=60°,
∴∠C1DC=60°,
∵B(-3,
3
),
∴AO=BC=
3
,AB=CO=3,
∴tan60°=
AO
DO
=
3

∴DO=1,
∴DC=3-1=2,
∴DC1=DC=2,
∴在Rt△C1DF中,C1F=DC1•sin∠C1DF=2×sin60°=
3

则DF=
1
2
DC1=1,
∴C1(-2,
3
),
故答案为:(-2,
3
).
点评:此题主要考查了翻折变换的性质以及等腰直角三角形的性质以及三角形中位线的性质等知识,根据已知得出BF的长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

同步练习册答案