精英家教网 > 初中数学 > 题目详情

设M=x-y,其中x可取-1、2,y可取-1、-2、3.

(1)求出M的所有等可能结果(用树状图或列表法求解);

(2)试求M是正值的概率.

答案:
解析:

  解:(1)

  5分

  (2) 8分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(11·兵团维吾尔)(10分)如图,在等腰梯形ABCD中,AD=4,BC=9,∠

B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD

向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.

(1)求AB的长;

(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;

(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90º+∠A;    ②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;
③设OD=m,AE+AF=n,则S△AEF=mn; ④EF是△ABC的中位线.
其中正确的结论是_____________

查看答案和解析>>

科目:初中数学 来源:2012年人教新课标版中考综合模拟数学卷(4) 题型:填空题

)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90º+∠A;    ②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;
③设OD=m,AE+AF=n,则S△AEF=mn; ④EF是△ABC的中位线.
其中正确的结论是_____________

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省南京市鼓楼区中考二模数学试卷(解析版) 题型:解答题

【提出问题】

如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?

【探究过程】

小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?

如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.

以下是几位同学的对话:

A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.

B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.

(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)

【解决问题】

根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

 

查看答案和解析>>

同步练习册答案