【题目】如图本题图①,在等腰Rt中, ,,为线段上一点,以为半径作交于点,连接、,线段、、的中点分别为、、.
(1)试探究是什么特殊三角形?说明理由;
(2)将绕点逆时针方向旋转到图②的位置,上述结论是否成立?并证明结论;
(3)若,把绕点在平面内自由旋转,求的面积y的最大值与最小值的差.
【答案】(1)为等腰直角三角形;(2)仍然为等腰直角三角形;(3)的最大值与最小值的差为:
【解析】分析:(1)由OA=OB,OP=OQ可得AP=BQ,再利用三角形的中位线可得△DMN是等腰直角三角形;
(2)由旋转的性质得∠AOP=∠BOQ,从而可证△AOP≌△BOQ,由三角形中位线的性质可得DM=DN,根据平行线的性质和三角形内角和可证∠MDN=90°,从而结论得证;
(3)如图,设⊙交于点,交延长线于点,连接,,.由三角形三边的关系得,,由三角形的面积公式得,从而可求出y的最大值和最小值,然后相减即可.
详解:(1)为等腰直角三角形
分别为的中点,
且
同理:
.
又
即为等腰直角三角形.
(2)如图,仍然为等腰直角三角形.
证明:由旋转的性质, .
≌,
.
分别为的中点, 且
同理:,
在等腰Rt中,
同理:
= .
为等腰直角三角形.
(3), 如图,设⊙交于点,交延长线于点,
连接
,而,
同理,
由题意,,
的最小值为. 同理,最大值为,
从而得的最大值与最小值的差为:
科目:初中数学 来源: 题型:
【题目】某地区在一次九年级数学质量检测试题中,有一道分值为8分的解答题,所有考生的得分只有四种,即:0分,3分,5分,8分,老师为了解本题学生得分情况,从全区4500名考生试卷中随机抽取一部分,分析、整理本题学生得分情况并绘制了如下两幅不完整的统计图:
请根据以上信息解答下列问题:
(1)本次调查从全区抽取了 份学生试卷;扇形统计图中a= ,b= ;
(2)补全条形统计图;
(3)该地区这次九年级数学质量检测中,请估计全区考生这道8分解答题的平均得分是多少?得8分的有多少名考生?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.2012-2018年我国博物馆参观人数统计如下:
小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是( )
A.①③B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为缓解扬州城区交通压力,城市南部快速通道已于4.18开工建设.某工程队承担了某道路900米长的改造任务.工程队在改造完360米道路后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造道路多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且△A1B1C1与△ABC关于原点O成中心对称,C点坐标为(-2,1)。
(1)请直接写出A1的坐标 ;并画出△A1B1C1.
(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.
(3)若△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形三边的长a、b、c满足,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.
(1)如图1,已知两条线段的长分别为a、c(a<c).用直尺和圆规作一个最短边、最长边的长分别为a、c的“匀称三角形”(不写作法,保留作图痕迹);
(2)如图2,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AB延长线于点E,交AC于点F,若,判断△AEF是否为“匀称三角形”?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,已知点A的坐标为(﹣2,0),把点A经过连续2014次这样的变换得到的点A2014的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com