精英家教网 > 初中数学 > 题目详情
13.已知3a-2b=2,则6a-4b+5的值为9.

分析 原式前两项提取2变形后,将已知等式代入计算即可求出值.

解答 解:∵3a-2b=2,
∴原式=2(3a-2b)+5=4+5=9,
故答案为:9

点评 此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.平面直角坐标系xOy中,点A、B分别在函数y1=$\frac{3}{x}$(x>0)与y2=-$\frac{3}{x}$(x<0)的图象上,A、B的横坐标分别为a、b.
(1)若AB∥x轴,求△OAB的面积;
(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;
(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1=$\frac{3}{x}$(x>0)的图象都有交点,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知二次函数 y=kx2-(4k+1)x+4(k≠0).
(1)若该二次函数的顶点在x轴上,求k的值;
(2)若x<-1时,y随x的增大而增大,求实数k的取值范囤;
(3)①说明点B(4,0)在抛物线y=kx2-(4k+1)x+4上;
           ②直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠EBF≤60°,求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是B(请选择正确的一个)
A.a2-2ab+b2=(a-b)2
B.a2-b2=(a+b)(a-b)
C.a2+ab=a(a+b)
(2)若x2-9y2=12,x+3y=4,求x-3y的值;
(3)计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{{2016}^{2}}$)(1-$\frac{1}{{2017}^{2}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2-mx+$\frac{m}{2}$-$\frac{1}{4}$=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形;
(2)求出此时菱形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35度.(直接写出结果)
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简,再求值:
($\frac{1}{x+y}$-$\frac{1}{x-y}$)÷$\frac{2y}{{x}^{2}-2xy{+y}^{2}}$,其中x=$\sqrt{3}$+$\sqrt{2}$,y=$\sqrt{3}$-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简($\frac{{x}^{2}-6x}{x+2}$+2)÷$\frac{{x}^{2}-4}{{x}^{2}+4x+4}$,然后从2、-2、1、-1中选取一个你认为合适的数作为x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在把易拉罐中水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,求此时水杯中的水深为多少?(结果用根式表示)

查看答案和解析>>

同步练习册答案