精英家教网 > 初中数学 > 题目详情
3.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是(  )
A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)
C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)

分析 根据点的坐标的定义结合图形对各选项分析判断即可得解.

解答 解:A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;
B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;
C、(3,4)→(4,2)不都能到达,故本选项正确;
D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.
故选C.

点评 本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的$\frac{1}{4}$还少5台,则购置的笔记本电脑有16台.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:$\frac{2x}{{x}^{2}-{y}^{2}}$-$\frac{2y}{x^2-y^2}$=$\frac{2}{x+y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.
(1)证明:DE=DF;
(2)试探究线段EF和AD是否垂直?并说明理由;
(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.一个正方形的边长为3,则它的对角线长为(  )
A.3B.3$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:
①CE=CF;
②线段EF的最小值为2$\sqrt{3}$;
③当AD=2时,EF与半圆相切;
④若点F恰好落在弧BC上,则AD=2$\sqrt{5}$;
⑤当点D从点A运动到点B时,线段EF扫过的面积是16$\sqrt{3}$.
其中正确结论的序号是①③⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.把式子:-6x2+12x-6因式分解,正确的是(  )
A.-6(x-1)2B.-6(x+1)2C.-6x(x-2)D.-6x(x+2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在△ABC中,AD是∠BAC的角平分线,DE,DF分别是△ABD和△ACD的高,则AD与EF的关系是(  )
A.EF垂直平分ADB.AD垂直平分EF
C.AD与EF互相垂直平分D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知一次函数的图象经过(2,5)和(-1,2)两点.
(1)求此一次函数的解析式;
(2)用描点法在坐标系中画出这个函数的图象,求函数图象与x轴交点A、与y轴交点B的坐标;
(3)求△AOB的面积.

查看答案和解析>>

同步练习册答案