【题目】如图,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿CB向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?
【答案】(1)10cm;(2);(3)t=3或t=
【解析】
(1)在Rt△CPQ中,当t=3秒,可知CP、CQ的长,运用勾股定理可将PQ的长求出;
(2)由点P,点Q的运动速度和运动时间,又知AC,BC的长,可将CP、CQ用含t的表达式求出,代入直角三角形面积公式=CP×CQ求解;
(3)应分两种情况:当Rt△CPQ∽Rt△CAB时,根据,可将时间t求出;当Rt△CPQ∽Rt△CBA时,根据,可求出时间t.
由题意得AP=4t,CQ=2t,则CP=20﹣4t,
(1)当t=3秒时,CP=20﹣4t=8cm,CQ=2t=6cm,
由勾股定理得PQ=;
(2)由题意得AP=4t,CQ=2t,则CP=20﹣4t,
因此Rt△CPQ的面积为S=;
(3)分两种情况:
①当Rt△CPQ∽Rt△CAB时,
,即,
解得:t=3秒;
②当Rt△CPQ∽Rt△CBA时,
,即,
解得:t=秒.
因此t=3秒或t=秒时,以点C、P、Q为顶点的三角形与△ABC相似
科目:初中数学 来源: 题型:
【题目】等腰△BCD中,∠DCB=120°,点E满足∠DEC=60°.
(1)如图1,点E在边BD上时,求证:ED=2BE;
(2)如图2,过点B作DE的垂线交DE的延长线于点F,试探究DE和EF的数量关系,并证明;
(3)若∠DEB=150°,直接写出BE,DE和EC的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=a(x﹣)(x+3)交x轴于点A、B,交y轴于点C,tan∠CAO=.
(1)求a值;
(2)点P为第一象限内抛物线上一点,点P的横坐标为t,连接PA,PC,设△PAC的面积为S,求S与t之间的关系式;
(3)在(2)的条件下,点Q在第一象限内的抛物线上(点Q在点P的上方),过点P作PE⊥AB,垂足为E,点D在线段AQ上,点F在线段AO上连接ED、DF,DE交AP于点G,若∠QDF+∠QDE=180°,∠DFA+∠AED=90°,PG=PE,PG:EF=3:2,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的矩形AOCD和矩形ABEF放置在如图所示的平面直角坐标系中,已知A(0,5),边BE交边CD于M,且ME=2,CM=4.
(1)求AD的长;
(2)求经过A、B、D三点的抛物线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市每天能出售甲、乙两种肉集装箱共21箱,且甲集装箱3天的销售量与乙集装箱4天的销售量相同.
(1)求甲、乙两种肉类集装箱每天分别能出售多少箱?
(2)若甲种肉类集装箱的进价为每箱200元,乙种肉类集装箱的进价为每箱180元,现超市打算购买甲、乙两种肉类集装箱共100箱,且手头资金不到18080元,则该超市有几种购买方案?
(3)若甲种肉类集装箱的售价为每箱260元,乙种肉类集装箱的售价为每箱230元,在(2)的情况下,哪种方案获利最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:.绘画;.唱歌;.跳舞;.演讲;.书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合统计图中的信息解决下列问题:
(1)这次抽查的学生人数是多少人?
(2)将条形统计图补充完整.
(3)求扇形统计图中课程所对应扇形的圆心角的度数.
(4)如果该校共有1200名学生,请你估计该校选择课程的学生约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.求教学楼CG的高.(参考数据:1.4,1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初中学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调査的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题
(1)参加调査的学生共有 人,在扇形图中,表示“其他球类”的扇形圆心角为 度;
(2)将条形图补充完整;
(3)若该校有2300名学生,则估计喜欢“足球”的学生共有 人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com