精英家教网 > 初中数学 > 题目详情
4.已知:如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF与⊙O相切;
(2)若BF=10,cos∠ABC=$\frac{12}{13}$,求⊙O的半径.

分析 (1)先证明△BEF是等腰三角形,再证明∠FBA+∠DBA=90°即可.
(2)在Rt△BDF中,cosD=$\frac{BD}{DF}=\frac{12}{13}$,设BD=12x,DF=13x,利用勾股定理列出方程即可解决问题.

解答 证明:(1)连接BD,

∵AD⊥AB,
∴∠BAD=90°,
∴BD是直径,BD过圆心,
∵AB=AC,
∴∠ABC=∠C,
∵∠D=∠C,
∴∠ABC=∠D
又∵AD⊥AB,且AF=AE
∴△BEF是等腰三角形,
∴∠ABC=∠ABF,
∴∠D=∠ABF,
又∵∠BAD=90°,
∴∠ABD+∠D=180°-∠BAD=180°-90°=90°,
∴∠ABD+∠ABF=90°,
∴∠DBF=90°,
∴OB⊥BF,
又∵OB是⊙O的半径,
∴BF是⊙OA切线;
(2)∵∠ABC=∠D,
∴cosD=cos∠ABC=$\frac{12}{13}$,
在Rt△BDF中,cosD=$\frac{BD}{DF}=\frac{12}{13}$,设BD=12x,DF=13x,
又∵BD2+BF2=DF2
∴(12x)2+102=(13x)2
∵x>0,
∴x=2,
∴BD=12×2=24,
∴OB=$\frac{1}{2}$BD=12
∴⊙O半径为12.

点评 本题考查圆、切线的判定、勾股定理等知识,灵活运用圆的有关知识是解题的关键,学会证明切线方法,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D,抛物线y=$\frac{1}{4}$x2+bx+c经过B、C、D三点.
(1)求此抛物线的解析式;
(2)若动直线MN(MN∥x 轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,
①若以P、C、M为顶点的三角形与△OCD相似,求实数t的值;
②当t为何值时,$\frac{MN•OP}{MN+OP}$的值最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.有四个式子:①$\sqrt{18}=3\sqrt{2}$;②$\sqrt{9}=±3$;③${(\sqrt{5}+1)^2}=6$;④3a3•2a2=6a6,从这四个式子中随机抽取一个,抽到的式子不正确的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D.
(1)过D作DE⊥MN于E(保留作图痕迹);
(2)证明:DE是⊙O的切线;
(3)若DE=6,AE=3,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知数据:4,5,4,6,8,则这组数据的众数和中位数分别是4和5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若y=$\sqrt{3-x}$有意义,则x的取值范围是x≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.当x的值分别是-1,0,1,2,3,4,5时,不等式x-2>0和x-3<0都能成立吗?再说出几个能使不等式x-2>0和x-3<0分别成立的x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如果关于x的方程x2+kx+$\frac{1}{2}$k2+$\frac{1}{2}$k+$\frac{1}{4}$=0有两个实数根x1、x2,那么$\frac{{x}_{1}^{2016}}{{x}_{2}^{2015}}$的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知a是方程x2-3x-1=0的一个根,则a2+$\frac{1}{{a}^{2}}$=11,a3-10a+5=8.

查看答案和解析>>

同步练习册答案