精英家教网 > 初中数学 > 题目详情
已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC精英家教网上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.
分析:(1)根据过A、C两点的直线的解析式即可求出A,C的坐标.
(2)根据A,O的坐标即可得出抛物线的对称轴的解析式,然后将A点坐标代入抛物线中,联立上述两式即可求出抛物线的解析式.
(3)直线与圆的位置关系无非是相切与否,可连接AD,证AD是否与AC垂直即可.由于B,D关于x轴对称,那么可得出∠CAO=∠DAO=45°,因此可求出∠DAB=90°,即DA⊥AC,因此AC与圆D相切.
(4)根据圆周角定理可得出∠AEO=45°,那么∠MOA=30°,即M点的纵坐标的绝对值和横坐标的绝对值的比为tan30°,由此可得出x,y的比例关系式,然后联立抛物线的解析式即可求出M点的坐标.(要注意的是本题要分点M在x轴上方还是下方两种情况进行求解)
解答:解:(1)A(-6,0),C(0,6)

(2)∵抛物线y=ax2+bx(a<0)经过A(-6,0),0(0,0).
∴对称轴x=-
b
2a
=-3,b=6a…①
当x=-3时,代入y=x+6得y=-3+6=3,精英家教网
∴B点坐标为(-3,3).
∵点B在抛物线y=ax2+bx上,
∴3=9a-3b…②
结合①②解得a=-
1
3
,b=-2,
∴该抛物线的函数关系式为y=-
1
3
x2-2x.

(3)相切
理由:连接AD,
∵AO=OC
∴∠ACO=∠CAO=45°
∵⊙B与⊙D关于x轴对称
∴∠BAO=∠DAO=45°
∴∠BAD=90°
又∵AD是⊙D的半径,
∴AC与⊙D相切.
∵抛物线的函数关系式为y=-
1
3
x2-2x,
∴函数顶点坐标为(-3,3),
由于D、B关于x轴对称,
则BD=3×2=6.

(4)存在这样的点M.
设M点的坐标为(x,y)
∵∠AEO=∠ACO=45°
而∠MOA:∠AEO=2:3
∴∠MOA=30°
当点M在x轴上方时,
y
-x
=tan30°=
3
3

∴y=-
3
3
x.
∵点M在抛物线y=-
1
3
x2-2x上,
∴-
3
3
x=-
1
3
x2-2x,
解得x=-6+
3
,x=0(不合题意,舍去)
∴M(-6+
3
,-1+2
3
).
当点M在x轴下方时,
-y
-x
=tan30°=
3
3

∴y=
3
3
x,
∵点M在抛物线y=-
1
3
x2-2x上.
3
3
x=-
1
3
x2-2x,
解得x=-6-
3
,x=0(不合题意,舍去).
∴M(-6-
3
,-1-2
3
),
∴M的坐标为(-6+
3
,-1+2
3
)或(-6-
3
,-1-2
3
).
点评:本题着重考查了待定系数法求二次函数解析式、图形旋转变换、切线的判定、圆周角定理等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=(  )
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知两直线a,b相交于O,∠2=30°,则∠1=
150
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•普陀区一模)在平面直角坐标系中,△ABC的顶点分别是A(-1,0),B(3,0),C(0,2),已知动直线y=m(0<m<2)与线段AC、BC分别交于D、E两点,而在x轴上存在点P,使得△DEP为等腰直角三角形,那么m的值等于
4
3
或1
4
3
或1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
12
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:直线y=kx+b的图象过点A(-3,1);B(-1,2),
(1)求:k和b的值;
(2)求:△AOB的面积(O为坐标原点);
(3)在x轴上有一动点C使得△ABC的周长最小,求C点坐标.

查看答案和解析>>

同步练习册答案