【题目】有三张正面分别写有数字-1,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.
(1)随机抽取一张,求抽到数字2的概率;
(2)先随机抽取一张,以其正面数字作为k值,将卡片放回再随机抽一张,以其正面的数字作为b值,请你用恰当的方法表示所有可能的结果,并求出直线y=kx+b的图像不经过第四象限的概率.
【答案】(1);(2)
【解析】
(1)由有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与直线y=kx+b的图像不经过第四象限的结果,再利用概率公式即可求得答案.
(1)∵有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,
∴P(抽到数字2)=
(2)列表:
b k | -1 | 1 | 2 |
-1 | (-1,-1) | (1,-1) | (2,-1) |
1 | (-1,1) | (1,1) | (2,1) |
2 | (-1,2) | (1,2) | (2,2) |
可能出现的结果有9种,使得直线y=kx+b的图像不经过第四象限的结果有4种,既(1,1),(2,1),(1,2),(2,2)所以P(图像不经过第四象限)=
科目:初中数学 来源: 题型:
【题目】小禾和小野按图示的规则玩“锤子”“剪刀”“布”游戏,游戏规则为:若一人出“剪刀”另一个出“布”,则出“剪刀”的胜;若一人出“锤子”另一个出“剪刀”,则出“锤子”的胜;若一人出“布”另一个出“锤子”,则出“布”的胜.若两人出相同的手势,则两人平局.
(1)用树状图或者表格表示小禾和小野玩一次所有可能的结果.
(2)这个游戏玩一次,小禾和小野分别胜出的概率是多少?从而说明游戏的公平性?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,点E是边AD的中点,连接BE并延长交CD的延长线于点F,交AC于点G.
(1)若FD=2, ,求线段DC的长;
(2)求证:EF·GB=BF·GE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线为常数)交轴于两点.
(1)求抛物线的解析式;
(2)直接写出:①抛物线的顶点坐标;
②抛物线与轴交点关于该抛物线对称轴对称的点的坐标;
(3)在直线下方的抛物线上是否存在点使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com