精英家教网 > 初中数学 > 题目详情
某市采用价格调控的手段达到节约用水的目的,制定如下用水收费标准:每户每月用水不超过6m3,水费按a元/m3收费;若超过
6m3,6m3以内的仍按a元/m3收费,超过6m3的部分以b元/m3收费.某户居民5、6月份用水量和水费如下表:
月份用水量(m3水费(元)
557.5
6927
设该用户每月用水量为xm3,应交水费y元.
(1)求出a,b的值;
(2)写出用水量不超过6m3和超过6m3时,y与x之间的函数关系式;
(3)若该用户7月份用水量为8m3,他应交多少元水费?
(1)依照题意,
当x≤6时,y=ax;
当x>6时,y=6a+b(x-6),
由已知,得7.5=5a,①
27=6a+3b,②
由①得a=1.5;把a=1.5代入②得b=6,

(2)由(1)得出:y=1.5x(x≤6),
y=9+6(x-6)=6x-27;(x>6)

(3)将x=8代入y=6x-27(x>6)得y=6×8-27=21(元),
故该用户7月份用水量为8m3,他应交21元水费.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,点B在y轴的负半轴上,点A在x轴的正半轴上,且OA=2,tan∠OAB=2.
(1)求点B的坐标;
(2)求直线AB的解析式;
(3)若点C的坐标为(-2,0),在直线AB上是否存在一点P,使△APC与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数图象经过点(-2,5)并且与y轴相交于点P,直线y=-
1
2
x+3与y轴相交于点Q,点Q恰与点P关于x轴对称,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平常对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+50,y2=2x-22.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)图象中a,b,c的值分别为:a=______,b=______,c=______.
(2)求该药品的稳定价格与稳定需求量.
(3)若供应量和需求量这两种量之间相差3万件,求此时对应的价格.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表是西昌市到攀枝花市两条线路的有关数据:
线路高速公路108国道
路程185千米250千米
过路费120元0元
(1)若小车在高速路上行驶的平均速度为90千米/小时,在108国道上行驶的平均速度为50千米/小时,则小车走高速公路比走108国道节省多少时间?
(2)若小车每千米的耗油量为x升,汽油价格为7元/升.问x为何值时,走哪条线路的总费用较少?(总费用=过路费+耗油费)
(3)公路管理部门在高速路口对从西昌市到攀枝花市五类不同耗油的小车进行统计,得到平均每小时通过的车辆数的频数分布直方图如图所示.请估算10小时年俄内这五类小车走高速公路比走108国道节省了多少升汽油?(以上结果均保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设△OPA的面积S.
(1)求S关于x的函数解析式;
(2)求x的取值范围;
(3)求S=12时,P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰直角三角形AOB中腰OA=OB=6,将它放在一个平面直角坐标系内,如图所示,已知点P是AB边上一动点,点Q是OA边上的定点,OQ=4.设点P的坐标是(x,y),△OPQ的面积为S.
(1)求y与x的函数关系式;
(2)求S与x的函数关系式,并求出当S=10时,点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA-OB所示.则折线段OA-AB所对应的函数关系式为______.

查看答案和解析>>

同步练习册答案