精英家教网 > 初中数学 > 题目详情
与y=2(x-1)2+3形状相同的抛物线解析式为(     )
A.y=1+x2B.y=(2x+1)2C.y=(x-1)2D.y=2x2
D.

试题分析:抛物线的形状只是与a有关,a相等,形状就相同.y=2(x﹣1)2+3中,a=2.
故选D.
考点:待定系数法求二次函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某相宜本草护肤品专柜计划在春节前夕促销甲、乙两款护肤品,根据市场调研,发现如下两种信息:
信息一:销售甲款护肤品所获利润y(元)与销售量x(件)之间存在二次函数关系y=ax2+bx.在x=10时,y=140;当x=30时,y=360.
信息二:销售乙款护肤品所获利润y(元)与销售量x(件)之间存在正比例函数关系y=3x.请根据以上信息,解答下列问题;
(1)求信息一中二次函数的表达式;
(2)该相宜本草护肤品专柜计划在春节前夕促销甲、乙两款护肤品共100件,请设计一个营销方案,使销售甲、乙两款护肤品获得的利润之和最大,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,二次函数的图像经过点和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.

(1)求点B的坐标;
(2)求二次函数的解析式;
(3)过点B作直线BC平行于x轴,直线BC与二次函数图像的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点坐标为(2,4),直线x=2与轴相交于点,连结,抛物线y=x从点沿方向平移,与直线x=2交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为,
①用的代数式表示点的坐标;
②当为何值时,线段最短;
(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2–kx+k–1(k>2).

(1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点;
(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若,求抛物线的表达式;
(3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.

(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,顶点为(4,1)的抛物线交轴于点,交轴于,两点(点在点的左侧),已知点坐标为(6,0).

(1)求此抛物线的解析式;
(2)联结AB,过点作线段的垂线交抛物线于点,如果以点为圆心的圆与抛物线的对称轴相切,先补全图形,再判断直线与⊙的位置关系并加以证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间.问:当点运动到什么位置时,的面积最大?求出的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+b x+c=0(a≠0)的一个解的范围是(   ) 

6.17
6.18
6.19
6.20
y=ax2+bx+c
-0.03
-0.01


A.6<x<6.17        B.6.17<x<6.18
C.6.18<x<6.19    D.6.19<x<6.20

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(    )
A.(1,0)B.(-1,0)C.(-2,1)D.(2,-1)

查看答案和解析>>

同步练习册答案