【题目】如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点的三角形叫格点三角形),
(1)请画出△ABC关于y轴对称的格点△A1B1C1,
(2)请判断△A1B1C1与△DEF是否相似,若相似,请写出相似比;若不相似,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图(),在四边形中,,,,,分别是,上的点,且.探究图中线段,,之间的数量关系.小王同学探究此问题的方法是,延长到点,使,连接,先证明≌,再证明≌,可得出结论,他的结论应该是__________.
如图(),若在四边形中,,,,分别是,上的点,且,上述结论是否仍然成立,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,tan∠ABC=,∠ACB=45°,AD=8,AD是边BC上的高,垂足为D,BE=4,点M从点B出发沿BC方向以每秒3个单位的速度运动,点N从点E出发,与点M同时同方向以每秒1个单位的速度运动.以MN为边在BC的上方作正方形MNGH.点M到达点C时停止运动,点N也随之停止运动.设运动时间为t(秒)(t>0).
(1)当t为多少秒时,点H刚好落在线段AB上?
(2)当t为多少秒时,点H刚好落在线段AC上?
(3)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,求出S关于t的函数关系式并写出自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二青会开幕式期间,出租车司机李师傅营运时是在南北走向的滨河西路上行进的,如果规定向南为正,向北为负,他这天上午所接位乘客的行车里程(单位:)为:,,,,,.(假设相邻两位乘客上下车没有时间间隔)
(1)试判断李师傅将最后一位乘客送到目的地时,他在出发点的什么方向,距离出发地多少千米?
(2)若汽车耗油量为,则这天上午李师傅接送乘客时出租车共耗油多少升?
(3)若出租车起步价为元,起步里程为(包括),超过部分每千米元,问李师傅这天上午共得车费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长.
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张分别标有数字2,3,4,6的扑克牌,除正面的数字外,牌的形状、大小完全相同.小红先从口袋中随机摸出一张扑克牌并记下牌上的数字为x;小颖在剩下的3张扑克牌中随机摸出一张扑克牌并记下牌上的数字为y,
(1)事件①:小红摸出标有数字3的牌,事件②:小颖摸出标有数字1的牌,则( )
A.事件①是必然事件,事件②是不可能事件,
B.事件①是随机事件,事件②是不可能事件,
C.事件①是必然事件,事件②是随机事件,
D.事件①是随机事件,事件②是必然事件,
(2)若|x-y|≤2,则说明小红与小颖“心领神会”,请求出她们“心领神会”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在一次打篮球时,篮球传出后的运动路线为如图所示的抛物线,以小明所站立的位置为原点O建立平面直角坐标系,篮球出手时在O点正上方1m处的点P.已知篮球运动时的高度y(m)与水平距离x(m)之间满足函数表达式y=-x2+x+c.
(1)求y与x之间的函数表达式;
(2)球在运动的过程中离地面的最大高度;
(3)小亮手举过头顶,跳起后的最大高度为BC=2.5m,若小亮要在篮球下落过程中接到球,求小亮离小明的最短距离OB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.
经过独立思考与分析后,小杰和小哲开始交流解题思路如下:
小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.
小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.
(1)请回答: 的说法是正确的,并简述正确的理由是 ;
(2)参考对上述问题的讨论,解决下面的问题:
若关于x的方程的解为非负数,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com