【题目】图中是抛物线形拱桥,当水面宽AB=8米时,拱顶到水面的距离CD=4米.如果水面上升1米,那么水面宽度为多少米?
【答案】解:如图所示建立平面直角坐标系,
设抛物线解析式为y=ax2 ,
由已知抛物线过点B(4,-4),则-4=a×42 ,
解得:a=-,
∴抛物线解析式为:y=-x2 ,
当y=-3,则-3=-x2 ,
解得:x1=2,x2=-2,
∴EF=4,
答:水面宽度为4米.
【解析】首先建立平面直角坐标系,设抛物线解析式为y=ax2,进而求出解析式,即可得出EF的长.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数y= 的图象与性质,小静根据学习函数的经验,对函数y= 的图象与性质进行了探究,下面是小静的探究过程,请补充完整:
(1)函数y= 的自变量x的取值范围是;
(2)下表是y与x的几组对应值.
x | … | ﹣1 | 0 | 1 | 3 | 4 | … | ||
y | … | 1 | 4 | m | 1 | … |
表中的m=;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
(4)结合函数图象,写出一条该函数图象的性质: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求出y与x的函数关系式
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少? .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)填空:点A的坐标是 ,点B的坐标是 ;
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点F在线段AB上,点E、G在线段CD上,AB∥CD.
(1)若BC平分∠ABD,∠D=100°,求∠ABC的度数.
解:∵AB∥CD(已知),
∴∠ABD+∠D=180°,( )
∵∠D=100°,(已知)
∴∠ABD= °,
∵BC平分∠ABD,(已知)
∴∠ABC=∠ABD=40°.(角平分线的定义)
(2)若∠1=∠2,求证:AE∥FG.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com