【题目】车间有20名工人,某一天他们生产的零件个数统计如下表:
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
【答案】(1)这一天20名工人生产零件的平均个数为;(2)中位数为 ,众数为11所以应该将定额确定为11个时,有利于提高大多数工人的积极性
【解析】
(1)利用平均数的定义求解即可;
(2)根据表中的数据,求出中位数,众数,结合平均数即可确定 “定额”.
(1)这一天20名工人生产零件的平均个数为
;
(2)中位数为 ,众数为11
当定额为12.5时,有8个人达标,8人获奖,不利于提高大多数工人的积极性;
当定额为12时,有12个人达标,8人获奖,不利于提高大多数工人的积极性;
当定额为11时,有18个人达标,12人获奖,有利于提高大多数工人的积极性;
所以应该将定额确定为11个时,有利于提高大多数工人的积极性
科目:初中数学 来源: 题型:
【题目】已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原。
(I)若点P落在矩形OBCD的边OB上,
①如图①,当点E与点O重合时,求点F的坐标;
②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若,求点F的坐标:
(Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在中,,∠ABC=30°,,点、E分别是边、AC上动点,点不与点、重合,DE∥BC.
(1)如图1,当AE=1时,求长;
(2)如图2,把沿着直线翻折得到,设
①当点F落在斜边上时,求的值;
② 如图3,当点F落在外部时,EF、DF分别与相交于点H、G,如果△ABC和△DEF重叠部分的面积为,求与的函数关系式及定义域.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息..部门每日餐余重量的频数分布直方图如下(数据分成6组:,,,):
.部门每日餐余重量在这一组的是:6.1 6.6 7.0 7.0 7.0 7.8
.部门每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:
部门 | 平均数 | 中位数 | 众数 |
| 6.4 |
| 7.0 |
/p> | 6.6 | 7.2 |
|
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在这两个部门中,“适度取餐,减少浪费”做得较好的部门是________(填“”或“”),理由是____________;
(3)结合这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发市场香蕉的价格如下表
购买香蕉数(千克) | 不超过20千克 | 20千克以上但不超过40千克 | 40千克以上 |
每千克的价格 | 6元 | 5元 | 4元 |
张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数和的图象关于原点成中心对称,我们就称其中一个函数是另一个函数的中心对称函数,也称函数和互为中心对称函数.
求函数的中心对称函数;
如图,在平面直角坐标系xOy中,E,F两点的坐标分别为,,二次函数的图象经过点E和原点O,顶点为已知函数和互为中心对称函数;
请在图中作出二次函数的顶点作图工具不限,并画出函数的大致图象;
当四边形EPFQ是矩形时,请求出a的值;
已知二次函数和互为中心对称函数,且的图象经过的顶点当时,求代数式的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,,,点为的中点,点在上,,将线段绕点按顺时针方向旋转得到,连接,然后把沿着翻折得到,连接,,取的中点,连接,则的长为( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )
A. ∠A+∠C+∠D+∠E=360°B. ∠A-∠C+∠D+∠E=180°
C. ∠E-∠C+∠D-∠A=90°D. ∠A+∠D=∠C+∠E
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列材料:
我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.
(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
2xy+y2﹣1+x2
=x2+2xy+y2﹣1
=(x+y)2﹣1
=(x+y+1)(x+y﹣1)
(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x2+2x﹣3
=x2+2x+1﹣4
=(x+1)2﹣22
=(x+1+2)(x+1﹣2)
=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题:
(1)分解因式:
(2)分解因式:x2﹣6x﹣7;
(3)分解因式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com