精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标系xOy中,点P为函数y=
1
4
x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=
1
4
x2有无其它公共点并说明理由.
分析:(1)由点的坐标知OA=OB,O为A,B的中点,利用三角形中位线定理可得(1)结论;
(2)要证四边形为平行四边形,由题找到两对边平行且相等,就可以了.在进一步证菱形,验证平行四边形相邻边相等就行了;
(3)判断有无公共点,要联立方程,看方程是否有解,若有解就存在.
解答:(1)证明:∵A(0,1),B(0,-1),
∴OA=OB.(1分)
又∵BQ∥x轴,
∴HA=HQ;(2分)

(2)证明:①由(1)可知AH=QH,∠AHR=∠QHP,
∵AR∥PQ,
∴∠RAH=∠PQH,
精英家教网∴△RAH≌△PQH.(3分)
∴AR=PQ,
又∵AR∥PQ,
∴四边形APQR为平行四边形.(4分)
②设P(m,
1
4
m2),
∵PQ∥y轴,则Q(m,-1),则PQ=1+
1
4
m2
过P作PG⊥y轴,垂足为G.
在Rt△APG中,AP=
AG2+PG2
=
(
1
4
m2-1)
2
+m2
=
(
1
4
m2+1)
2
=
1
4
m2
+1=PQ,
∴平行四边形APQR为菱形;(6分)

(3)解:设直线PR为y=kx+b,
由OH=CH,得H(
m
2
,0),P(m,
1
4
m2).
代入得:
m
2
k+b=0
km+b=
1
4
m2

k=
m
2
b=-
1
4
m2

∴直线PR为y=
m
2
x-
1
4
m2
.(7分)
设直线PR与抛物线的公共点为(x,
1
4
x2),代入直线PR关系式得:
1
4
x2-
m
2
x+
1
4
m2=0,
1
4
(x-m)2=0,
解得x=m.得公共点为(m,
1
4
m2).
所以直线PH与抛物线y=
1
4
x2只有一个公共点P.(8分)
点评:此题考查函数性质及三角形中位线定理,判断平行四边形及菱形的判断定理,最后把求公共点的问题,转化为判断方程有无解的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,⊙M与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接MC,过A、B、C三点的抛物线的顶点为N.
(1)求过A、B、C三点的抛物线的解析式;
(2)判断直线NA与⊙M的位置关系,并说明理由;
(3)一动点P从点C出发,以每秒1个单位长的速度沿CM向点M运动,同时,一动点Q从点B出发,沿射线BA以每秒4个单位长度的速度运动,当P运动到M点时,两动点同时停止运动,当时间t为何值时,以Q、O、C为顶点的三角形与△PCO相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB′C=
3
4

(1)求出B′点的坐标;
(2)求折痕CE所在直线的解析式;
(3)作B′G∥AB交CE于G,已知抛物线y=
1
8
x2-
14
3
通过G点,以O为圆心OG的长为精英家教网半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已如:如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,AB为⊙C的直径,PA切⊙O于点A,交x轴的负半轴于点P,连接PC交OA于点D.
(1)求证:PC⊥OA;
(2)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形
POCA的面积为S,求S与点P的横坐标x之间的函数关系式;
(3)在(2)的情况下,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB,若存在,直接写出点P的坐标(不写过程);若不存在,简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在直角坐标系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四个点.
(1)顺次连接A,B,C,D四个点组成的图形是什么图形?
(2)画出(1)中图形分别向上5个单位向右3个单位后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,A的坐标为(a,0),D的坐标为(0,b),且a、b满足
a+2
+(b-4)2=0

(1)求A、D两点的坐标;
(2)以A为直角顶点作等腰直角三角形△ADB,直接写出B的坐标;
(3)在(2)的条件下,当点B在第四象限时,将△ADB沿直线BD翻折得到△A′DB,点P为线段BD上一动点(不与B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,请探究:PD、PN、BN之间的数量关系.

查看答案和解析>>

同步练习册答案