精英家教网 > 初中数学 > 题目详情
如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB的取值范围是( )

A.8≤AB≤10
B.AB≥8
C.8<AB≤10
D.8<AB<10
【答案】分析:要求弦长AB的取值范围,则只需求得弦的最小值和弦的最大值.根据直线和圆相切时,运用垂径定理和勾股定理进行求解,求得弦的最小值;根据直径是圆中最长的弦,求得弦长的最大值.
解答:解:当AB与小圆相切时,OC⊥AB,
则AB=2AC=2=2×4=8;
当AB过圆心时最长即为大圆的直径10.
则弦长AB的取值范围是8<AB≤10.
故选C.
点评:主要考查了直线与圆的位置关系,以及勾股定理和垂径定理的运用.要掌握同心圆的性质,并会利用垂径定理以及勾股定理解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB的取值范围是(  )
A、8≤AB≤10B、AB≥8C、8<AB≤10D、8<AB<10

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以点O为圆心的圆与反比例函数的图象相交,若其中一个交点P的坐标为(5,1),则图中两块阴影部分的面积和为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是以点O为圆心的半圆,AB是半圆的一条弦,延长OB与过点A的直线交于点C,AB=BC=OB.
(1)试求∠C的度数.
(2)若 D是AC上一点,且AD=BD,试说明BD是⊙O的切线.
(3)在(2)的情况下,若圆O的半径为2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以点O为圆心的两个同心圆,当大圆的弦AB与小圆相切时弦长AB=8,则这两个同心圆所形成的圆环的面积是
16π
16π

查看答案和解析>>

同步练习册答案