【题目】在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人次测试成绩(单位:分)如下:
甲:,
,
,
,
乙:
,
,
,
,
.
回答下列问题:
(1)甲成绩的平均数是 ,乙成绩的平均数是 ;
(2)如果从甲、乙两人次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于
分的概率.(用列表或画树状图的方法)
【答案】(1);
;(2)抽到的两个人的成绩都大于
分的概率为
.
【解析】
(1)根据平均数的定义可列式计算;
(2)列表表示出所有等可能的结果,找到能使该事件发生的结果数,根据概率公式计算可得.
(1) 甲成绩的平均数=(79+86+82+85+835) ÷5=83(分),
乙成绩的平均数=(88+79+90+81+725) ÷5=82(分);
(2)列表如下
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
由表格可知,所有等可能结果共种,其中两人成绩都大于
分有
种,
∴抽到的两个人的成绩都大于分的概率为
.
或树状图如图:
由树状图可知,所有等可能结果共种,其中两人成绩都大于
分有
种,
抽到的两个人的成绩都大于
分的概率为
.
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点
,反比例函数
的图象过点A
(1)求和
的值.
(2)过点B作BC∥x轴,与双曲线交于点C,求△OAC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求解体验:
(1)已知抛物线 y=﹣x2+bx﹣3 经过点(﹣1,0),则 b= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线表达式是 .
抽象感悟:
我们定义:对于抛物线 y=ax2+bx+c(a≠0),以 y 轴上的点 M(0,m)为中心,作该抛物线关于点 M 对称的 抛物线 y′,则我们又称抛物线 y′为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.
(2)已知抛物线 y=﹣x2﹣2x+5 关于点(0,m)的衍生抛物线为 y′,若这两条抛物线有交点,求 m 的取值范 围.
问题解决:
(3)已知抛物线 y=ax2+2ax﹣b(a≠0)
①若抛物线 y 的衍生抛物线为 y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求 a、b 的值及衍生中心的坐标;
②若抛物线 y 关于点(0,k+12)的衍生抛物线为 y1,其顶点为 A1;关于点(0,k+22)的衍生抛物线为 y2,其顶点为 A2;…;关于点(0,k+n2)的衍生抛物线为 yn,其顶点为 An…(n 为正整数).求 An An+1 的长(用含 n 的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是(____)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中正确的是( )
A. 抛物线与x轴的一个交点为(4,0)
B. 函数y=ax2+bx+c的最大值为6
C. 抛物线的对称轴是x=
D. 在对称轴右侧,y随x增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:
(1)max{5,2}= ,max{0,3}= ;
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;
(3)求函数与y=﹣x+2的图象的交点坐标,函数
的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,
}的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)
(1)求抛物线的解析式
(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点
①当点N在何处时,△CAN的周长最小?
②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.
(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是___;
(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;
(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”,请写出AD长度的所有可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com