分析 由∠EAC=∠DAB可得到∠EAD=∠CAB,结合条件可证明△EAD≌△CAB,利用全等三角形的性质可得AE=AC.
解答 证明:
∵∠EAC=∠DAB,
∴∠EAC+∠CAD=∠CAD+∠DAB,
即∠EAD=∠CAB,
在△EAD和△CAB中
$\left\{\begin{array}{l}{∠D=∠B}\\{AD=AB}\\{∠EAD=∠CAB}\end{array}\right.$
∴△EAD≌△CAB(ASA),
∴AE=AC.
点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com