精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-2(m+2)x+2(m-1).
(1)证明:无论m取何值,函数图象与x轴都有两个不相同的交点;
(2)当图象的对称轴为直线x=3时,求它与x轴两交点及顶点所构成的三角形的面积.
分析:(1)判断函数图象与x轴的交点情况,就要列出判别式,用配方法确定判别式大于0;
(2)已知对称轴,可以用对称轴的公式求出本题中的待定系数,确定函数解析式,再根据图象求面积.
解答:(1)证明:∵b2-4ac=4(m+2)2-8(m-1)=4(m+1)2+20>0,
∴无论m取何值,函数图象与x轴都有两个不相同的交点;

(2)由对称轴x=3得:-
-2(m+2)
2
=3,解得m=1,
∴二次函数为y=x2-6x.
∴与x轴的两交点是(0,0),(6,0);顶点是(3,-9),
∴面积为:
1
2
×6×9=27.
点评:解答此题的关键是根据对称轴的公式求待定系数,然后由图象解答求面积的问题,锻炼了学生数形结合的思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案