【题目】矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF、AB,求证:EF∥AB;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
【答案】(1)E(4,4);(2)见解析;(3)y=
【解析】
(1)首先确定点F坐标,求出反比例函数解析式,再根据解析式求得点E坐标即可;
(2)连接AB,分别求出∠EFC,∠ABC的正切值即可解决问题;
(3)先作出辅助线判断出Rt△MEG∽Rt△BGF,再确定出点E,F坐标进而EG=8﹣,GF=4﹣,求出BD,最后用勾股定理建立方程求出k即可得出结论;
解:(1)∵四边形OACB是矩形,OB=8,OA=4,
∴C(8,4),
∵点F是BC中点,
∴F(8,2),
∵点F在y=上,
∴k=16,反比例函数解析式为y=
∵点E在反比例函数图像上,且E点的纵坐标为4,
∴4=
∴x=4
∴E(4,4).
(2)连接AB,设点F(8,a),
∴k=8a,
∴E(2a,4),
∴CF=4﹣a,EC=8﹣2a,
在Rt△ECF中,tan∠EFC==2,
在Rt△ACB中,tan∠ABC==2,
∴tan∠EFC=tan∠ABC,
∴∠EFC=∠ABC,
∴EF∥AB.
(3)如图,
设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,
∴∠EGF=∠C=90°,EC=EG,CF=GF,
∴∠MGE+∠FGB=90°,
过点E作EM⊥OB,
∴∠MGE+∠MEG=90°,
∴∠MEG=∠FGB,
∴Rt△MEG∽Rt△BGF,
∴,
∵点E(,4),F(8,),
∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,
∴EG=EC=8﹣,GF=CF=4﹣,
∵EM=4,
∴,
∴GB=2,
在Rt△GBF中,GF2=GB2+BF2,
即:(4﹣)2=(2)2+()2,
∴k=12,
∴反比例函数表达式为y= .
科目:初中数学 来源: 题型:
【题目】如图所示,AB 是⊙O 的直径,P 为 AB 延长线上的一点,PC 切⊙O 于点 C,AD⊥PC, 垂足为 D,弦 CE 平分∠ACB,交 AB 于点 F,连接 AE.
(1)求证:PC=PF;
(2)若 tan∠ABC=,AE=5,求线段 PC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=CD,求证四边形AMCN是矩形;
(3)若∠ACD=90°,求证四边形AMCN是菱形;
(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为4元的日用品,若按每件5元的价格销售,每天能卖出300件,若按每件6元的价格销售,每天能卖出200件,假定每天销售件数(件)与价格(元/件)之间满足一次函数关系.
(1)试求与之间的函数关系式;
(2)令每天的利润为,求出与之间的函数关系式;当销售价格定为多少时,才能使每天的利润最大?每天最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.
(1)求出k,b及m的值.
(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是 ________.
(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.
(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?
(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com