精英家教网 > 初中数学 > 题目详情
如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC.
(1)求证:AC2=AE•AB;
(2)延长EC到点P,连接PB,若PB=PE,试判断PB与⊙O的位置关系,并说明理由.
【答案】分析:(1)要求证:AC2=AE•AB,只要证明△AEC∽△ACB即可;
(2)判断PB为⊙O的切线,只要证明PB⊥OB即可.
解答:(1)证明:连接BC,
∵AB⊥CD,CD为⊙O的直径,
∴BC=AC.
∴∠1=∠2.
又∵AE=CE,
∴∠1=∠3.
∴△AEC∽△ACB.

即AC2=AB•AE.(4分)

(2)解:PB与⊙O相切.理由如下:
连接OB,
∵PB=PE,
∴∠PBE=∠PEB.
∵∠1=∠2=∠3,
∴∠PEB=∠1+∠3=2∠2.
∵∠PBE=∠2+∠PBC,∴∠PBC=∠2,
∵∠OBC=∠OCB.
∴∠OBP=∠OBC+∠PBC=∠OCB+∠2=90°.
∴PB⊥OB.
即PB为⊙O的切线.(10分)
点评:证明线段的乘积相等的问题一般可以转化为三角形相似问题,证明切线的问题,可以转化为证明切线是垂直于半径,并且经过半径的外端点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC=EB.
(1)求证:△CEB∽△CBD;
(2)若CE=3,CB=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知⊙O的弦AB垂直于直径CD,垂足为F,连接CA、CB.
(1)求证:∠CAB=∠CBA;
(2)在AB上有一点E,延长EC到点P,连接PB,若EA=EC,PB=PE,求证:PB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的弦AB、CD相交于点E,
AC
的度数为60°,
BD
的度数为100°,则∠AEC等于(  )
A、60°B、100°
C、80°D、130°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2
5
cm,则PE的长为(  )
A、4cm
B、3cm
C、5cm
D、
2
cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的弦AC=2cm,∠ABC=45°,则图中阴影部分的面积是
1
2
π-1(cm2
1
2
π-1(cm2

查看答案和解析>>

同步练习册答案