如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是______。
5
解析试题分析:在AC上截取AE=AN,连接BE,根据角平分线的性质结合公共边即可得到△AME≌△AMN,可得ME=MN,即得BM+MN=BM+ME≥BE,根据BM+MN有最小值可得当BE是点B到直线AC的距离时,BE⊥AC,则可得△ABE为等腰直角三角形,从而求得结果.
在AC上截取AE=AN,连接BE
∵∠BAC的平分线交BC于点D
∴∠EAM=∠NAM
∵AM=AM
∴△AME≌△AMN(SAS)
∴ME=MN
∴BM+MN=BM+ME≥BE
∵BM+MN有最小值
当BE是点B到直线AC的距离时,BE⊥AC
又AB=,∠BAC=45°,此时,△ABE为等腰直角三角形
∴BE=5,即BE取最小值为5
∴BM+MN的最小值是5.
考点:轴对称的应用
点评:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.
科目:初中数学 来源: 题型:
| ||
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com