精英家教网 > 初中数学 > 题目详情

如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是______。

5

解析试题分析:在AC上截取AE=AN,连接BE,根据角平分线的性质结合公共边即可得到△AME≌△AMN,可得ME=MN,即得BM+MN=BM+ME≥BE,根据BM+MN有最小值可得当BE是点B到直线AC的距离时,BE⊥AC,则可得△ABE为等腰直角三角形,从而求得结果.
在AC上截取AE=AN,连接BE

∵∠BAC的平分线交BC于点D
∴∠EAM=∠NAM
∵AM=AM
∴△AME≌△AMN(SAS)
∴ME=MN
∴BM+MN=BM+ME≥BE
∵BM+MN有最小值
当BE是点B到直线AC的距离时,BE⊥AC
又AB=,∠BAC=45°,此时,△ABE为等腰直角三角形
∴BE=5,即BE取最小值为5
∴BM+MN的最小值是5.
考点:轴对称的应用
点评:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在锐角△ABC中,以BC为直径的半圆O分别交AB,AC与D、E两点,且cosA=
3
3
,则S△ADE:S四边形DBCE的值为(  )
A、
1
2
B、
1
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在锐角△ABC中,a>b>c,以某任意两个顶点为顶点作矩形,第三个顶点落在以这两个顶点所确定的对边上,这样可以作三个面积相等的矩形,请问这三个矩形的周长大小关系如何?(记ta、tb、tc分别以a、b、c为边的矩形的周长)答:
 

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,在锐角△ABC中,AB>AC,AD⊥BC于D,以AD为直径的⊙O分别交AB,AC于E,F,连接DE,DF.
(1)求证:∠EAF+∠EDF=180°;
(2)已知P是射线DC上一个动点,当点P运动到PD=BD时,连接AP,交⊙O于G,连接DG.设∠EDG=∠α,∠APB=∠β,那么∠α与∠β有何数量关系?试证明你的结论.[在探究∠α与∠β的数量关系时,必要时可直接运用(1)的结论进行推理与解答]

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在锐角△ABC中,∠ABC的平分线交AC于点D,AB边上的高CE交BD于点M,过点M作BC的垂线段MN,若EC=4,∠BCE=45°,则MN=
 
(结果保留三位有效数字).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角△ABC中,AB=4,∠BAC=45°.∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点.则BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步练习册答案