【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.
(1)求该抛物线的解析式;
(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;
(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.
【答案】(1);(2)点P的坐标是(1,3)、(2,3)、(5,-3)或(-2,-3);(3)线段EG的最小值为..
【解析】
(1)根据抛物线y=ax2+bx+2经过点A(-1,0)和点B(4,0),应用待定系数法,求出该抛物线的解析式即可;
(2)首先根据三角形的面积的求法,求出△CAD的面积,即可求出△PDB的面积,然后求出BD=2,即可求出|n|=3,据此判断出n=3或-3,再把它代入抛物线的解析式,求出x的值是多少,即可判断出点P的坐标;
(3)首先应用待定系数法,求出BC所在的直线的解析式,然后根据点P的坐标是(m,n),求出点F的坐标,再根据二次函数最值的求法,求出EG2的最小值,即可求出线段EG的最小值.
解:(1)把A(-1,0),B(4,0)两点的坐标代入y=ax2+bx+2中,可得
,
解得:,
∴抛物线的解析式为:;
(2))∵抛物线的解析式为,
当x=0时,y=2,
∴点C的坐标是(0,2),
∵点A(-1,0)、点D(2,0),
∴AD=2-(-1)=3,
∴S△CAD =,
∴S△PDB =3,
∵点B(4,0)、点D(2,0),
∴BD=2,
∴|n|=3×2÷2=3,
∴n=3或-3,
①当n=3时,
,
解得:m=1或m=2,
∴点P的坐标是(1,3)或(2,3);
②当n=-3时,
解得m=5或m=-2,
∴点P的坐标是(5,-3)或(-2,-3);
综上,可得点P的坐标是(1,3)、(2,3)、(5,-3)或(-2,-3);
(3)如图,
设BC所在的直线的解析式是:y=mx+n,
∵点C的坐标是(0,2),点B的坐标是(4,0),
∴,
解得:,
∴BC所在的直线的解析式是:,
∵点P的坐标是(m,n),
∴点F的坐标是(4-2n,n),
∴
,
∴当时,线段EG有最小值:,
∴线段EG的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为轴于点,反比例函数的图像的一支分别交于点,延长交反比例函数的图像的另一支于点E,已知D的纵坐标为.
(1)求反比例函数的解析式及直线OA的解析式;
(2)连接BC,已知,求
(3)若在轴上有两点,将直线绕点旋转,仍与交于,能否构成以为顶点的四边形为菱形,如果能请求出的值,如果不能说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求平行四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】便民”水泥代销点销售某种水泥,每吨进价为250元,如果每吨销售价定为290元时,平均每天可售出16吨.
(1)若代销点采取降低促销的方式,试建立每吨的销售利润y(元)与每吨降低x(元)之间的函数关系式;
(2)若每吨售价每降低5元,则平均每天能多售出4吨,问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为,按表格要求确定奖项.
(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;
(2)是否每次抽奖都会获奖,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1,A1,再过A1,B1分别作两腰的垂线段所得的垂足为B2,A2,用同样的作法依次得到垂足B3,A3,….若AB为3米,sinα=,则水平钢条A2B2的长度为( )
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形中,,,是的一点,且,是上一点,射线交的延长线于点,交于点,连结,,交于点.
(1)当点为中点时,则 , ;(直接写出答案)
(2)在整个运动过程中,的值是否会变化,若不变,求出它的值;若变化,请说明理由;
(3)若为等腰三角形时,请求出所有满足条件的的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣);并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求图②中C层次所在扇形的圆心角的度数;
(4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com