精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在RtABC中,∠C=90°BC=1AC=4,把边长分别为n个正方形依次放入ABC中,则第n个正方形的边长_______________(用含n的式子表示).

【答案】

【解析】

根据正方形的对边平行证明BDF∽△BCA,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n个正方形的边长.

解:如下图所示,

∵四边形DCEF是正方形,
DFCE
∴△BDF∽△BCA
DFAC=BDBC
x14=1-x1):1
解得x1=
同理,前两个小正方形上方的三角形相似,

解得x2=x12
同理可得,

解得:

以此类推,第n个正方形的边长.

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC,∠A80°,点DE分别在边ABAC上,且DADECE

1)求作点F,使得四边形BDEF为平行四边形;(要求:尺规作图,保留痕迹,不写作法)

2)连接CF,写出图中经过旋转可完全重合的两个三角形,并指出旋转中心和旋转角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司经销一种商品,每件商品的成本为元,经市场调查发现,在一段时间内,销售量(件)随销售单价(元/件)的变化而变化,具体关系式为,设这种商品在这段时间内的销售利润为(元),解答如下问题:

1)求之间的函数表达式;

2)当取何值时,的值最大?

3)如果物价部门规定这种商品的销售单价不得高于/件,公司想要在这段时间内获得元的销售利润,那么销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:二次函数y=ax2bxc的图象所示,下列结论中:①abc>0;②2ab=0;③当m≠1时,abam2bm;④abc>0;⑤若ax12bx1=ax22bx2,且x1x2,则x1x2=2,正确的个数为

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到ABCMBC的中点,PAB的中点,连接PM,若BC2,∠BAC30°,则线段PM的最大值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2ABAD,我们称该四边形为可分四边形,∠DAB称为可分角

1)如图2,四边形ABCD可分四边形,∠DAB可分角,求证:DAC∽△CAB

2)如图2,四边形ABCD可分四边形,∠DAB可分角,如果∠DCB=∠DAB,则∠DAB °

3)现有四边形ABCD可分四边形,∠DAB可分角,且AC4BC2,∠D90°,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x-元二次方程-x2+mx-t=0 (t为实数)l<x<3的范围内有解,则t的取值范围是( )

A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块直角三角形纸片,两直角边AC=6cmBC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD等于( )

A. 3cmB. 4cmC. 5cmD. 6cm

查看答案和解析>>

同步练习册答案