【题目】规定:把一次函数y=kx+b的一次项系数和常数项互换得y=bx+k,我们称y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|b|))为互助一次函数,例如:y=-2x+3和y=3x-2就是互助一次函数.如图1所示,一次函数y=kx+b和它的互助一次函数的图象1,2交于点P,1,2与x轴、y轴分别交于点A,B和点C,D.
(1)如图1所示,当k=-1,b=5时,直接写出点P的坐标是_________.
(2)如图2所示,已知点M(-1,1.5),N(-2,0).试探究随着k,b值的变化,MP+NP的值是否发生变化,若不变,求出MP+NP的值;若变化,求出使MP+NP取最小值时点P的坐标.
【答案】(1);(2)使取最小值时的点坐标为
【解析】
(1)根据互助一次函数的定义,由k=-1,b=5分别写出两个函数解析式,联立,解二元一次方程组,即可求出交点P的坐标;
(2)联立,解得=1,故点在直线上运动,的值随之发生变化;作N点关于的对称点,根据两点之间线段最短,可知连接对称点和M的线段就是MP+NP的最小值,用待定系数法求出直线的函数解析式,进而求出P点坐标.
(1)联立
解得:
即P点坐标为,
故答案为:;
(2)由解得,
即,
随着值的变化,点在直线上运动,的值随之发生变化,如图所示,作点关于直线的对称点,连接交直线于点,则此时取得最小值.
设直线的函数解析式为,
分别将M(-1,1.5)和代入解析式得:
解得:
∴直线的函数解析式为:,
令,则
.
使取最小值时的点坐标为.
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019 年3月16日,由中国科协主办的第六届全国青年科普创新实验暨作品大赛启动,重点围绕“智能、环保、教育”三大主题,某中学派出甲、乙两组队伍参加本次大赛,有四个命题供他们选择:
①智能:智能控制及人工智能命题(用表示)
②环保:包括生物环境、风能两个命题(分别用表示)
③教育:未来教育命题(用表示)
甲组队伍在四个命题中随机选取一个报名 ,恰好选择“教育”主题的概率是多少?
若甲,乙两组队伍各随机从四个命题中选--个报名.请用树状图法或列表法求出他们都选择“环保”主题的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为4,点E.F分别在边AB.BC上,且AE=BF=1,CE.DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC=S四边形BEOF中,正确的有_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数y=-x2-bx+c的图象经过点A,点B(1,0)和点C(0,3).点D是抛物线的顶点.
(1)求二次函数的解析式和点D的坐标
(2)直线y=kx+n(k≠0)与抛物线交于点M,N,当△CMN的面积被y轴平分时,求k和n应满足的条件
(3)抛物线的对称轴与x轴交于点E,将抛物线向下平移m(m>0)个单位,平移后抛物线与y轴交于点C′,连接DC′,OD,是否存在OD平分∠C′DE的情况?若存在,求出m的值;若不荐在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】公司以10元/千克的价格收购一批产品进行销售,经过市场调查获悉,日销售量y(千克)是销售价格x(元/千克)的一次函数,部分数据如表:
销售价格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日销售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)直接写出y与x之间的函数表达式;
(2)求日销售利润为150元时的销售价格;
(3)若公司每销售1千克产品需另行支出a元(0<a<10)的费用,当20≤x≤25时,公司的日获利润的最大值为1215元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为( )
A. x> B. <x< C. x< D. 0<x<
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com