【题目】如图,ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
【答案】A
【解析】
过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.
如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,
在OABC中,OC=AB,
∵D为边AB的中点,
∴OC=AB=2AD,CE=2DF,
∴OE=2AF,
设AF=a,∵点C、D都在反比例函数上,
∴点C(﹣2a,﹣),
∵A(3,0),
∴D(﹣a﹣3,),
∴-=2×,
解得a=1,
∴OE=2,CE=﹣,
∵∠COA=∠α,
∴tan∠COA=tan∠α=,
即tanα=﹣,
k=﹣4tanα,
故选A.
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正确的是__.(把所有正确结论的序号都选上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AC是边长为6的菱形ABCD的对角线,∠ABC=∠PAQ=60°,∠PAQ绕点A旋转,射线AP、AQ分别交边BC、CD于点E、F,连接EF.请探究:
(1)在旋转过程中,线段AE、AF有怎样的数量关系?并说明理由;
(2)在旋转过程中,△AEF的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由
(3)如图2,将∠PAQ沿着AC向下平移至点A处,使CA′:AA′=2:1,在∠PA′Q绕点A′旋转过程中,始终保持∠ABC=∠PA′Q,射线A′P、A′Q分别交直线BC、CD于点E、F,连接EF.当S△A′EF:S菱形ABCD=19:18时,直接写出线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴相交于A,B两点,点P是抛物线上一点,且,.
求该抛物线的表达式;
设点为抛物线上的一个动点,当点M在曲线BA之间含端点移动时,求的最大值及取得最大值时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于
点E.BC=1.8m,BD=0.5m,∠A=45,∠F=29.
(1)求滑道DF的长(精确到0.1m);
(2)求踏梯AB底端A与滑道DF底端F的距离AF(精确到0.1m).
(参考数据:sin29≈0.48,cos29≈0.87,tan29≈0.55)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,有一块直角三角板,其中,,,A、B在x轴上,点A的坐标为,圆M的半径为,圆心M的坐标为,圆M以每秒1个单位长度的速度沿x轴向右做平移运动,运动时间为t秒;
求点C的坐标;
当点M在的内部且与直线BC相切时,求t的值;
如图2,点E、F分别是BC、AC的中点,连接EM、FM,在运动过程中,是否存在某一时刻,使?若存在,直接写出t的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是某公园里的一种健身器材,其侧面示意图如图(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求点D到地面的高度是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com