精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是(3,0),tan∠OAC=3;

(1)求该抛物线的函数表达式;
(2)点P在x轴上方的抛物线上,且∠PAB=∠CAB,求点P的坐标;
(3)若平行于x轴的直线与抛物线交于点M、N(M点在N点左侧),
①若以MN为直径的圆与x轴相切,求该圆的半径;
②若Q(m,4)是直线MN上一动点,当以点C、B、Q为顶点的三角形的面积等于6时,请直接写出符合条件的m值,为

【答案】
(1)

解:∵抛物线y=ax2+bx﹣3与y轴交于点C,

∴点C的坐标为(0,﹣3),

∴OC=3,

∵tan∠OAC=3,

∴OA=1,即点A的坐标为(﹣1,0),

将点A和点B的坐标代入得: ,解得

∴抛物线的函数表达式是y=x2﹣2x﹣3


(2)

解:∵∠PAB=∠CAB,

∴tan∠PAB=tan∠CAB=3,

∵点P在x轴上方,设点P的横坐标为x,则点P的纵坐标为3(x+1),

∴3(x+1)=x2﹣2x﹣3,得x=﹣1(舍去)或x=6,当x=6时,y=21,

∴点P的坐标为(6,21)


(3)3或11
【解析】解:(3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的对称轴为直线x=1.
①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),
∴R=( R+1﹣1)2﹣4,解得:R= (负值舍去),
∴R=
当直线MN在x轴下方时,设圆的半径为r(r>0),
∴N(r+1,﹣r),
∴﹣r=(r+1﹣1)2﹣4,解得:r= (负值舍去),
∴r=
∴圆的半径为:
②设直线BC的解析式为y=kx+b,将点C和点B的坐标代入得:
解得k=1,b=﹣3,
∴直线BC的解析式为y=x﹣3.
勾股定理可知:BC= =3
∵△QCB的面积为6,
∴BC边上的高线的长度= =2
如图1所示:即直线BC与y=4的交点为D,当点Q在点D的左侧时,过点Q作QE⊥BC,则EQ=2

将y=0代入得直线BC的解析式得:x﹣3=4,解得x=7,
∴点D的坐标为(7,4).
∵QD∥x轴,
∴∠QDC=∠OBC=45°.
∴QD= QE= ×2 =4.
∴Q(3,4).
∴m=3.
如图1所示,当Q位于点D的右侧时(Q′处),过点Q′作Q′F⊥BC,垂足为F.则FQ=2
同理可知:DQ′=4.
∴点Q′的坐标为(11,4).
∴m=11.
综上所述,m的值为3或11.
所以答案是:3或11.
【考点精析】认真审题,首先需要了解二次函数的概念(一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣ ),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1

(1)在图中画出△A1B1C1

(2)点A1,B1,C1的坐标分别为         

(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.

我选择第 个方程。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.

证明:∵   

∴∠CDA=90°,∠DAB=90° (   ).

∴∠1+∠3=90°,∠2+∠4=90°.

又∵∠1=∠2,

      ),

∴DF∥AE (   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD的顶点A在原点O处,点B在x轴上,点C的坐标为(6,6),点D在y轴上,动点P,Q各从点A,D同时出发,分别沿AD,DC方向运动,且速度均为每秒1个单位长度.
(1)探索AQ与BP有什么样的关系?并说明理由;
(2)如图2,当点P运动到线段AD的中点处时,AQ与BP交于点E,求线段CE的长.
(3)如图3,设运动t秒后,点P仍在线段AD上,AQ交BD于F,且△BPQ的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求解答下列各题

(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2

试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值。

(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,(a×b×c)178 ÷(a36×b7×c6)的值。

查看答案和解析>>

同步练习册答案