A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.
解答 解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
$\left\{\begin{array}{l}{AE=AF}\\{AB=AD}\end{array}\right.$,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正确).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正确),
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正确).
设EC=x,由勾股定理,得
EF=$\sqrt{2}$x,CG=$\frac{\sqrt{2}}{2}$x,
AG=AEsin60°=EFsin60°=2×CGsin60°=$\frac{\sqrt{6}}{2}$x,
∴AC=$\frac{\sqrt{6}x+\sqrt{2}x}{2}$,
∴AB=$\frac{\sqrt{3}x+x}{2}$,
∴BE=$\frac{\sqrt{3}x+x}{2}$-x=$\frac{\sqrt{3}x-x}{2}$,
∴BE+DF=$\sqrt{3}$x-x≠$\sqrt{2}$x,(故④错误),
∵S△CEF=$\frac{{x}^{2}}{2}$,
S△ABE=$\frac{\frac{\sqrt{3}x-x}{2}•\frac{\sqrt{3}x+x}{2}}{2}$=$\frac{{x}^{2}}{4}$,
∴2S△ABE=$\frac{{x}^{2}}{2}$=S△CEF,(故⑤正确).
综上所述,正确的有4个,
故选:A.
点评 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com