精英家教网 > 初中数学 > 题目详情
2.如图,正方形OABC的面积是4,点B在反比例函数y=$\frac{k}{x}$(x<0)的图象上.则反比例函数的解析式是(  )
A.y=$\frac{4}{x}$B.y=$\frac{2}{x}$C.y=-$\frac{2}{x}$D.y=-$\frac{4}{x}$

分析 根据反比例函数y=$\frac{k}{x}$(k≠0)系数k的几何意义和正方形的面积公式得到|k|=4,然后去绝对值得到满足条件k的值.

解答 解:根据题意得正方形OABC的面积=|k|=4,
而k>0,
所以k=4,
∴反比例函数的解析式是y=$\frac{4}{x}$,
故选A.

点评 本题考查了反比例函数y=$\frac{k}{x}$(k≠0)系数k的几何意义:从反比例函数y=$\frac{k}{x}$(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(  )
A.(4,0)B.(5,0)C.(0,5)D.(5,5)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型.已知这座桥的跨度L=32米,拱高h=8米.
(1)如果设计成抛物线型,以AB所在直线为x轴,AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;
(2)如果设计成圆弧型,求该圆弧所在圆的半径;
(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A1B1C1
(3)写出点B1的坐标;
(4)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.四边形ABCD顶点都在格点上,点A的坐标为(-2,-1)
(1)以点A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB′C′D′.画出旋转后的图形,并写出B′、C′、D′的坐标;
(2)求点C旋转轨迹的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?
(2)若宾馆某一天获利10640元,则房价定为多少元?
(3)房价定为多少时,宾馆的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知x1,x2是一元二次方程x2-2x=0的两根,则x12+x22的值是(  )
A.0B.2C.-2D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在△ABC中,点D、E分别在边AB、AC上,且DE不行于BC,则下列条件中不能判断△ABC∽△AED的是(  )
A.∠AED=∠BB.∠ADE=∠CC.$\frac{AD}{AB}$=$\frac{AE}{AC}$D.$\frac{AD}{AE}$=$\frac{AC}{AB}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0)、C(3,0)、D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒$\frac{1}{2}$个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?

查看答案和解析>>

同步练习册答案