精英家教网 > 初中数学 > 题目详情
已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
1
3
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

(1)联立两直线解析式得:
y=-x+4
y=
1
3
x

解得:
x=3
y=1

则C坐标为(3,1);
(2)如图1所示,将x=1代入y=-x+4得:y=-1+4=3;代入y=
1
3
x得:y=
1
3

∴DE=OE-OD=3-
1
3
=
8
3

∴MN=2DE=
16
3

将x=a代入y=-x+4得:y=-a+4;代入y=
1
3
x得:y=
1
3
a,
∴MN=|-a+4-
1
3
a|=
16
3

解得:a=-1或a=7,
则a的值为-1或7;
(3)过O作OQ⊥OP,交BP的延长线于点Q,可得∠POQ=90°,
∵∠BPO=135°,
∴∠OPQ=45°,
∴∠Q=∠OPQ=45°,
∴△POQ为等腰直角三角形,
∴OP=OQ,
∵∠AOB=∠POQ=90°,
∴∠AOB+∠BOP=∠POQ+∠POB,即∠AOP=∠BOQ,
∵OA=OB=4,
OA
OP
=
OB
OQ

∴△AOP△BOQ,
∴∠APO=∠BQO=45°,
∴∠APB=∠BPO-∠APO=90°,
则AP⊥BP.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象如图,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,有一条直线l:y=-
3
3
x+4
与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.
(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标______;
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.
(1)求A、B、P三点的坐标;
(2)求四边形PQOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

A地有机器16台,B地有机器12台,现要把化肥运往甲、乙两地,现已知甲地需要15台,乙地需要13台.如果从A地运往甲、乙两地运费分别是500元/台与400元/台,从B地运往甲、乙两地运费分别是300元/台与600元/台,怎样调运花钱最少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A(-3,0),B(0,-4),P为直线y=-x+5在第一象限上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.则当x=______时,四边形ABCD面积的最大值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两组同学进行登山比赛,两组队员从山脚出发沿同一路线到达山顶的过程中,路程随时间变化关系如图所示:
(1)写出甲、乙登山过程中路程S与时间t的函数关系式(不要求写自变量的取值范围).
(2)如果甲组到达山顶时,乙组同学继续登山,甲组在山顶休息半小时后沿原路下山,在距山顶0.5千米B处与乙组相遇,若相遇后各自按原速前进,那么乙组同学到达山顶时,甲组距离山脚的距离是多少千米?

查看答案和解析>>

同步练习册答案