【题目】在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有( )
A.1个B.2个C.3个D.4个
【答案】A
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①由抛物线可知:a>0,c<0,
对称轴x=﹣<0,
∴b>0,
∴abc<0,故①正确;
②由对称轴可知:﹣=﹣1,
∴b=2a,
∵x=1时,y=a+b+c=0,
∴c+3a=0,
∴c+2a=﹣3a+2a=﹣a<0,故②正确;
③(1,0)关于x=﹣1的对称点为(﹣3,0),
∴x=﹣3时,y=9a﹣3b+c=0,故③正确;
④当x=﹣1时,y的最小值为a﹣b+c,
∴x=m时,y=am2+bm+c,
∴am2+bm+c≥a-b+c,
即a﹣b≤m(am+b),故④错误;
⑤抛物线与x轴有两个交点,
∴△>0,
即b2﹣4ac>0,
∴4ac﹣b2<0,故⑤正确;
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD与AB相交,连接CO,过点D作⊙O的切线,与AB的延长线交于点E,若DE∥AC,∠BAC=40°,则∠OCD的度数为( )
A.65°B.30°C.25°D.20°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与y轴交于点.
(1)求c的值;
(2)当时,求抛物线顶点的坐标;
(3)已知点,若抛物线与线段有两个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O.
(1)如图①,连接OA,OC,若,求的度数;
(2)如图②,直径CD的延长线与过点A的切线相交于点P.若,⊙O的半径为2,求AD,PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)、如图a,求证:△BCP≌△DCQ;
(2)、如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推动阳光体育运动的广泛开展,引导学生走向大自然,走到阳光下积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图所示两个统计图,请根据相关信息,解答下列问题:
(1)求本次抽样调查的学生人数
(2)通过计算补全条形统计图和扇形统计图;
(3)若学生计划购买200双运动鞋,建议购买35号运动鞋约多少双?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知开口向下的抛物线与轴交于两点,与轴交于点不小于.
(1)求点的坐标(用含的代数式表示);
(2)求系数的取值范围;
请你根据自身能力从或(4)小题中任选-题作答.
(3)如图2,当时,为直线上方抛物线上一动点,过点作交的延长线于点试探究是否存在点,使得的某一个角等于的倍?若存在,求点的横坐标;若不存在,请说明理由.
(4)如图2,当时,为直线上方抛物线上一动点,过点作交的延长线于点抛物线的对称轴与轴交于点连接试探究是否存在点使得与相似?若存在,求点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形的顶点坐标分别为(1,1),(1,-1),(-1,-1),(-1,1),轴上有一点(0,2).作点关于点的对称点,作点关于点的对称点,作点关于点的对称点,作点关于点的对称点,作点关于点的对称点,作点关于点的对称点,……,按此操作下去,则的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com