精英家教网 > 初中数学 > 题目详情
x=-
1
3
时,求代数式2(x2-
1
2
+2x)-4(x-x2+1)
的值.
分析:先根据整式加减的法则把原式进行化简,再把x的值代入进行计算即可.
解答:解:原式=2x2-1+4x-4x+4x2-4
=6x2-5,
当x=-
1
3
时,原式=6×(-
1
3
)2
-5=
2
3
-5=-4
1
3
点评:本题考查的是整式的化简求值,熟知整式的加减法则是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一个算式分子都是整数,满足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反复若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的
1
x
对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把
1
x
忽略不计,例如,当忽略x=3+
1
x
中的
1
x
时,就得到x=3;当忽略x=3+
1
3+
1
x
中的
1
x
时,就得到x=3+
1
3
;如此等等,于是可以得到一系列分数;
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读理解
九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.
请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.
问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.
解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.
由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教网
∴y=0.7x+1.6.
∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).
解决问题
请应用上述方法解决下列问题:
如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:(π-3)0-|
5
-3|+(-
1
3
-2-
5

(2)先化简:
a2-b2
a2-ab
÷(a+
2ab+b2
a
)
,当b=-1时,请你为a任选一个适当的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解
九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.
请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.
问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.
解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.
由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把E(0,1.6),C(2,3)代入得数学公式解得数学公式
∴y=0.7x+1.6.
∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).
解决问题
请应用上述方法解决下列问题:
如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省南京市溧水县中考数学二模试卷(解析版) 题型:解答题

阅读理解
九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.
请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.
问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.
解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.
由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).
解决问题
请应用上述方法解决下列问题:
如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.

查看答案和解析>>

同步练习册答案