精英家教网 > 初中数学 > 题目详情

已知三个不同的实数a,b,c满足a-b+c=3,方程x2+ax+1=0和x2+bx+c=0有一个相同的实根,方程x2+x+a=0和x2+cx+b=0也有一个相同的实根.求a,b,c的值.

解:依次将题设中所给的四个方程编号为①,②,③,④.
设x1是方程①和方程②的一个相同的实根,则

两式相减,可解得
设x2是方程③和方程④的一个相同的实根,则
两式相减,可解得
所以x1x2=1.
又∵方程①的两根之积等于1,于是x2也是方程①的根,
则x22+ax2+1=0.
又∵x22+x2+a=0,两式相减,得(a-1)x2=a-1.
若a=1,则方程①无实根,
所以a≠1,故x2=1.
于是a=-2,b+c=-1.又a-b+c=3,
解得b=-3,c=2.
分析:将题设中所给的四个方程编号为①,②,③,④.设x1是方程①和方程②的一个相同的实根,x2是方程③和方程④的一个相同的实根,得到关于x1与x2的解析式,进而求出a的值,再求出b、c的值即可解答.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的解.同时考查了从结论的反面思考问题的方法和代数式的变形能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y1=x2-2x-3.
(1)结合函数y1的图象,确定当x取什么值时,y1>0,y1=0,y1<0;
(2)根据(1)的结论,确定函数y2=
12
(|y1|-y1)关于x的解析式;
(3)若一次函数y=kx+b(k≠0)的图象与函数y2的图象交于三个不同的点,试确定实数k与b应满足的条件?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市101中学九年级(上)第二次月考数学试卷(解析版) 题型:解答题

已知二次函数y1=x2-2x-3.
(1)结合函数y1的图象,确定当x取什么值时,y1>0,y1=0,y1<0;
(2)根据(1)的结论,确定函数y2=(|y1|-y1)关于x的解析式;
(3)若一次函数y=kx+b(k≠0)的图象与函数y2的图象交于三个不同的点,试确定实数k与b应满足的条件?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•天津)已知二次函数y1=x2-2x-3.
(1)结合函数y1的图象,确定当x取什么值时,y1>0,y1=0,y1<0;
(2)根据(1)的结论,确定函数y2=(|y1|-y1)关于x的解析式;
(3)若一次函数y=kx+b(k≠0)的图象与函数y2的图象交于三个不同的点,试确定实数k与b应满足的条件?

查看答案和解析>>

科目:初中数学 来源:2002年天津市中考数学试卷(解析版) 题型:解答题

(2002•天津)已知二次函数y1=x2-2x-3.
(1)结合函数y1的图象,确定当x取什么值时,y1>0,y1=0,y1<0;
(2)根据(1)的结论,确定函数y2=(|y1|-y1)关于x的解析式;
(3)若一次函数y=kx+b(k≠0)的图象与函数y2的图象交于三个不同的点,试确定实数k与b应满足的条件?

查看答案和解析>>

同步练习册答案