分析 (1)如图1,根据矩形对角线相等且互相平分得:OC=OD,再证明△ACO≌△ADO,则∠OAB=30°;
(2)如图2,点O一定在∠CAB的平分线上运动,根据垂线段最短得:当OB⊥AO时,OB的长最小,根据直角三角形30度角所对的直角边是斜边的一半得出结论.
解答 解:(1)如图1,∵四边形CDGH是矩形,
∴CG=DH,OC=$\frac{1}{2}$CG,OD=$\frac{1}{2}$DH,
∴OC=OD,
∵△ACD是等边三角形,
∴AC=AD,∠CAD=60°,
∵OA=OA,
∴△ACO≌△ADO,
∴∠OAB=∠CAO=$\frac{1}{2}$×60°=30°,
故答案为:30;
(2)如图2,由(1)可知:点O一定在∠CAB的平分线上运动,所以当OB⊥AO时,OB的长最小,
∵∠OAB=30°,∠AOB=90°,
∴OB=$\frac{1}{2}$AB=$\frac{1}{2}$×10=5,
即OB的最小值为5cm,
故答案为:5.
点评 本题考查了矩形的性质、全等三角形的性质和判定、含30°角的直角三角形的性质,熟练掌握直角三角形中,30°角所对的直角边等于斜边的一半,利用了矩形对角线相等且平分的性质得对角线的一半相等,为三角形全等用铺垫;另外还利用了垂线段最短解决了求最值问题.
科目:初中数学 来源: 题型:选择题
A. | 36 | B. | 76 | C. | 66 | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com