精英家教网 > 初中数学 > 题目详情

如图在平面直角坐标系中,点A的坐标为(1,) ,△AOB的面积是.

(1)求点B的坐标;

(2)求过点A、O、B的抛物线的解析式;

(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;

     (4)在(2)中轴下方的抛物线上是否存在一点P,过点P作轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.

 


解:(1)由题意得:

∴B(-2,0)                                  

       (2)设抛物线的解析式为y=ax(x+2),代入点A(1, ),得

                           

 


(3)存在点C.过点A作AF垂直于x轴于点F,抛物线的对称轴x= - 1交x轴于点E.当点C位于对称轴与线段AB的交点时,△AOC的周长最小.

∵  △BCE∽△BAF,

                                              

(4)存在. 如图,设p(x,y),直线AB为y=kx+b,则

              

            ∴直线AB为

 =  |OB||YP|+|OB||YD|=|YP|+|YD|

               =.

∵S△AOD= S△AOB-S△BOD =-×2×∣x+∣=-x+.

==.  

 ∴x1=-  , x2=1(舍去).

∴p(-,-)  .

又∵S△BOD =x+,

== .

∴x1=- ,    x2=-2.

P(-2,0),不符合题意.

∴ 存在,点P坐标是(-,-).                

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图在平面直角坐标系中,△AOB的顶点分别为A(2,0),O(0,0),B(0,4).
①△AOC与△AOB关于x轴成轴对称,则C点坐标为
(0,-4)

②将△AOB绕AB的中点D逆时针旋转90°得△EGF,则点A的对应点E的坐标为
(3,3)

③在图中画出△AOC和△EGF,△AOB与△EGF重叠的面积为
1
平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在平面直角坐标系xOy中,点A的坐标为(2,0),以点A为圆心,2为半径的圆与x轴交于O,B两点,C为⊙A上一点,P是x轴上的一点,连接CP,将⊙A向上平移1个单位长度,⊙A与x轴交于M、N,与y轴相切于点G,且CP与⊙A相切于点C,∠CAP=60°.请你求出平移后MN和PO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示点B在抛物线y=ax2+ax-2上.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)将三角板ABC绕顶点A逆时针方向旋转90°到达△AB′C′的位置,请写出点B′坐标
(1,-1)
(1,-1)
,点C′坐标
(2,1)
(2,1)
;判断点B′
,C′
(填“在”或“不”)在(2)中的抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,M为x轴上一点,⊙M交x轴于A、B两点,交y轴于C、D两点,P为
BC
上的一个动点,CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C点坐标;
(2)当点P在
BC
上运动时,线段AQ的长是否改变?若不变,请求出其长度;若改变,请说明理由.(提示:连接AC).
(3)当点P在
BC
上运动时,是否存在这样的点P,使CQ所在直线经过点M?若存在请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案