精英家教网 > 初中数学 > 题目详情

【题目】如图所示①,OP为一条拉直的细线,A,B两点在OP上,且OA:AP=1:3,OB:BP =3:5.若先固定B点,将OB折向BP,使得OB重叠在BP上,如图13-②,再从图②的A点及与A点重叠处一起剪开,使得细线分成三段,求三段细线由小到大的长度比.

【答案】三段细线由小到大的长度比为1:1:2.

【解析】

根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.

OP的长度为8a.

OA:AP=1:3,OB:BP=3:5,得OA=2a,AP=6a,OB=3a,BP=5a,所以AB=a.

又根据折叠的方式,可得剪开后这三段的长度分别是:OA的长度,即2a;AB的长度的2倍,即2a;图②中AP的长度,即4a.

所以此三段细线由小到大的长度比为:2a:2a:4a=1:1:2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B,顶点为C,将抛物线在A,C,B之间的部分记为图象E(A,B两点除外).
(1)求抛物线的顶点坐标.
(2)AB=6时,经过点C的直线y=kx+b(k≠0)与图象E有两个交点,结合函数的图象,求k的取值范围.
(3)若横、纵坐标都是整数的点叫整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,C,B之间的图象E与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第(100)个图案有___________________个三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是

A. 他离家8km共用了30min B. 他等公交车时间为6min

C. 他步行的速度是100m/min D. 公交车的速度是350m/min

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有ABCD四个整数点(即各点均表示整数),且2AB=BC=3CD,若AD两点表示的数分别为﹣56,且AC的中点为EBD的中点为MBC之间距点B的距离为BC的点N,则该数轴的原点为(  )

A. E B. F C. M D. N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠C=90°,点DAB的中点,点E,F分别在BC,AC上,且AF=CE.

(1)填空:∠A的度数是   

(2)探究DEDF的关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的坐标是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个水池,用两根水管注水,如果单开甲管,5小时注满水池,如果单开乙管,10小时注满水池.

(1)如果甲先注水2小时,然后由甲、乙共同注水,那么还需要多少时间才能把水池注满?

(2)假设在水池下面安装了排水管丙管,单开丙管6小时可以把一满池水放完,如果三管同时开放,多少小时才能把一空池注满水?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:

根据以上信息解答下列问题:
(1)补全条形统计图 , 并计算扇形统计图中m=
(2)该市支持选项B的司机大约有多少人?
(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?

查看答案和解析>>

同步练习册答案