精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.

解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形,
∴∠ABD=60°;

(2)由(1)可知BD=AB=4,
又∵O为BD的中点,
∴OB=2,
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1.
分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;
(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.
点评:本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案