A. | -4 | B. | 4 | C. | -6 | D. | 6 |
分析 设B点坐标为(a,b),根据等腰直角三角形的性质得OA=$\sqrt{2}$AC,AB=$\sqrt{2}$AD,OC=AC,AD=BD,则OA2-AB2=8变形为AC2-AD2=4,利用平方差公式得到(AC+AD)(AC-AD)=4,所以(OC+BD)•CD=4,因为a<0,b>0,则有a•b=-4,根据反比例函数图象上点的坐标特征易得k=-4.
解答 解:设B点坐标为(a,b),
∵△OAC和△BAD都是等腰直角三角形,
∴OA=$\sqrt{2}$AC,AB=$\sqrt{2}$AD,OC=AC,AD=BD,
∵OA2-AB2=8,
∴2AC2-2AD2=8,即AC2-AD2=4,
∴(AC+AD)(AC-AD)=4,
∴(OC+BD)•CD=4,
∴a•b=-4,
∴k=-4.
故选A.
点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
科目:初中数学 来源: 题型:选择题
A. | ax2+bx+c=0 | B. | x2-2=(x+3)2 | C. | 2x+3x-5=0 | D. | x2-1=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\sqrt{3.6}$=-0.6 | B. | $\root{3}{-5}$=-$\root{3}{5}$ | C. | $\sqrt{(-13)^{2}}$=-13 | D. | $\sqrt{36}$=±6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{8}$ | B. | 3 | C. | 4 | D. | $\sqrt{32}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com