精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.
(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;
(2)如图2,当∠BAC=100°,时,求∠CBD的大小;
(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.
(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.

试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.
(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.
(3)结合(1)(2)的解题过程可以发现规律,求得答案.
试题解析:(1)30°;(2)30°;
(2)如图作等边△AFC,连结DF、BF.
∴AF=FC=AC,∠FAC=∠AFC=60°.
∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.
∵∠ACD=20°,∴∠DCB=20°.
∴∠DCB=∠FCB=20°.①
∵AC=CD,AC=FC,∴DC=FC.②
∵BC=BC,③
∴由①②③,得△DCB≌△FCB,
∴DB=BF,∠DBC=∠FBC.
∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.
∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.
∴∠BAD=∠FAD=20°.④
∵AB=AC,AC=AF,∴AB=AF.⑤
∵AD=AD,⑥
∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.

(3)α=120°-m°,α=60°或α=240-m°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在△ABC中,,设c为最长边.当时,△ABC是直角三角形;当时,利用代数式的大小关系,可以判断△ABC的形状(按角分类).
(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为____三角形;当△ABC三边长分别为6,8,11时,△ABC为______三角形.
(2)小明同学根据上述探究,有下面的猜想:“当时,△ABC为锐角三角形;当时,△ABC为钝角三角形.” 请你根据小明的猜想完成下面的问题:
时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某人在D处测得山顶C的仰角为37o,向前走200米来到山脚A处,测得山坡AC的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,参考数据:).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).
(1)当G(4,8)时,则∠FGE=                   °
(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.
要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知矩形ABCD中,AB=1,在BC上取一点E,AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为(  )
A.4,30°B.2,60°C.1,30°D.3,60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是    (填出一个即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为(  )
A.7或8B.6或1OC.6或7D.7或10

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,AC =       .

查看答案和解析>>

同步练习册答案