精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,一次函数 (m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1 , y1),M2(x2 , y2)两点,试探究 是否为定值,并写出探究过程.

【答案】
(1)

解:∵ 经过点(﹣3,0),

∴0=- +m,解得m=

∴直线解析式为 ,C(0, ).

∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),

∴另一交点为B(5,0),

设抛物线解析式为y=a(x+3)(x﹣5),

∵抛物线经过C(0, ),

=a3(﹣5),解得a=-

∴抛物线解析式为y=- x2+ x+


(2)

解:假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,

则AC∥EF且AC=EF.如答图1,

(i)当点E在点E位置时,过点E作EG⊥x轴于点G,

∵AC∥EF,∴∠CAO=∠EFG,

又∵

∴△CAO≌△EFG,

∴EG=CO= ,即yE=

=- xE2+ xE+ ,解得xE=2(xE=0与C点重合,舍去),

∴E(2, ),SACEF=

(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,

同理可求得E′( +1,- ),SACF′E′=


(3)

解:要使△ACP的周长最小,只需AP+CP最小即可.

如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).

∵B(5,0),C(0, ),

∴直线BC解析式为y=- x+

∵xP=1,∴yP=3,即P(1,3).

令经过点P(1,3)的直线为y=kx+b,则k+b=3,即b=3﹣k,

则直线的解析式是:y=kx+3﹣k,

∵y=kx+3﹣k,y=- x2+ x+

联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,

∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.

∵y1=kx1+3﹣k,y2=kx2+3﹣k,

∴y1﹣y2=k(x1﹣x2).

根据两点间距离公式得到:

M1M2= = =

∴M1M2= = =4(1+k2).

又M1P= = =

同理M2P=

∴M1PM2P=(1+k2 =(1+k2 =(1+k2 =4(1+k2).

∴M1PM2P=M1M2

=1为定值.


【解析】(1)首先求得m的值和直线的解析式,根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;(2)存在点E使得以A、C、E、F为顶点的四边形是平行四边形.如答图1所示,过点E作EG⊥x轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,如答图1所示,不要漏解;(3)本问较为复杂,如答图2所示,分几个步骤解决:
第1步:确定何时△ACP的周长最小.利用轴对称的性质和两点之间线段最短的原理解决;第2步:确定P点坐标P(1,3),从而直线M1M2的解析式可以表示为y=kx+3﹣k;第3步:利用根与系数关系求得M1、M2两点坐标间的关,得到x1+x2=2﹣4k,x1x2=﹣4k﹣3.这一步是为了后续的复杂计算做准备;第4步:利用两点间的距离公式,分别求得线段M1M2、M1P和M2P的长度,相互比较即可得到结论: =1为定值.这一步涉及大量的运算,注意不要出错,否则难以得出最后的结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式

例如:由图1可得到(a+b)=a+2ab+b

1 2 3

1)写出由图2所表示的数学等式:_____________________写出由图3所表示的数学等式:_____________________

2)利用上述结论,解决下面问题:已知a+b+c=11bc+ac+ab=38,求a+b+c的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=100°,∠C=70°,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B的度数为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,GCD上一点,延长BCE,使CE=CG,连接BG并延长交DEF.

(1)求证:△BCG≌△DCE;

(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.

(1)如图,当点P在线段AB上运动,且n=90°时

①若PD∥BC,PE∥AC,则m=_____

②若m=50°,求x+y的值.

(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是(
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情景:

如图1,AB//CD,PAB=130°,PCD=120°,求∠APC的度数.

小明的思路是:

过点PPE//AB,

∴∠PAB+APE=180°.

∵∠PAB=130°,∴∠APE=50°

AB//CD,PE//AB,PE//CD,

∴∠PCD+CPE=180°.

∵∠PCD=120°,∴∠CPE=60°

∴∠APC=APE+CPE=110°.

问题迁移:

如果ABCD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,PCD的度数会跟着发生变化.

(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,PCD和∠APC之间的数量关系?并说明理由.

(2)如图4,AQ,CQ分别平分∠PAB,PCD,那么∠AQC和角∠APC有怎择的数量关系?

(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,PCD,请直接写出AQC和角∠APC的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.

(1)购买一个足球、一个篮球各需多少元?

(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:

请根据所给信息,解答下列问题:

(1)a=__________,b=__________;

(2)请补全频数分布直方图;

(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?

查看答案和解析>>

同步练习册答案