精英家教网 > 初中数学 > 题目详情
1.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.

(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.

分析 (1)结论:PB=PQ,如图①中,过P作PE⊥BC,PF⊥CD,垂足分别为E,F.只要证明Rt△PQF≌Rt△PBE即可.
(2)结论不变,证明方法类似.

解答 解:(1)结论:PB=PQ,
理由:如图①中,过P作PE⊥BC,PF⊥CD,垂足分别为E,F.
∵P为正方形对角线AC上的点,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四边形PECF为正方形.
∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,
∴∠BPE=∠QPF,
在△PQF和△PBE中,
$\left\{\begin{array}{l}{∠PFQ=∠PEB}\\{∠QPF=∠BPE}\\{PF=PE}\end{array}\right.$,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ;               

(2)结论:PB=PQ.
理由:如图②,过P作PE⊥BC,PF⊥CD,垂足分别为E,F,
∵P为正方形对角线AC上的点,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四边形PECF为正方形,
∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,
∴∠BPE=∠QPF,
在△PQF和△PBE中,
$\left\{\begin{array}{l}{∠PFQ=∠PEB}\\{∠QPF=∠BPE}\\{PF=PE}\end{array}\right.$,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ.

点评 本题考查正方形的性质、全等三角形的判定和性质、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全球的三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=50°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=$\frac{c}{x}$的图象相交于B(-1,5),C($\frac{5}{2}$,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点.
(1)求k,b的值;
(2)直接写出y1>y2时x的取值范围x<-1或0<x<$\frac{5}{2}$;
(3)已知-1<m<$\frac{3}{2}$,过点P作x轴的平行线与函数y2=$\frac{c}{x}$的图象相交于点D,试问△PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,点D从点C出发沿
CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒.过点D作DF⊥BC于点F,连接DE,EF.当四边形AEFD是菱形时,t的值为(  )
A.20秒B.18秒C.12秒D.6秒

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:A=($\frac{3}{a+1}$-a+1)÷$\frac{{a}^{2}-4a+4}{a+1}$
(1)化简A;
(2)若a满足方程a2-2a-3=0,求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)已知x+y=4,x2+y2=9,求xy的值;
(2)如图,AB,CD相交于点O,OE平分∠AOD,已知∠AOC=120°,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.化简$\frac{{3{m^2}}}{9mn}$=$\frac{m}{3n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.
(1)求证:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列各图中,正确画出AC边上的高的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案