精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线AB与函数yx>0)的图象交于点Am,2),B(2,n).过点AAC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使ODOC,且ACD的面积是6,连接BC

(1)求mkn的值;

(2)求ABC的面积.

【答案】(1) m4k8n4;(2ABC的面积为4

【解析】试题分析:(1)由点A的纵坐标为2OC=2,由OD=OCOD=1CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n

2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.

试题解析:(1A的坐标为(m2),AC平行于x轴,

∴OC=2AC⊥y轴,

∵OD=OC

∴OD=1

∴CD=3

∵△ACD的面积为6

CDAC=6

∴AC=4,即m=4

则点A的坐标为(42),将其代入y=可得k=8

B2n)在y=的图象上,

∴n=4

2)如图,过点BBE⊥AC于点E,则BE=2

∴SABC=ACBE=×4×2=4

△ABC的面积为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:

日期x

1

2

3

4

水位y(米)

20.00

20.50

21.00

21.50

(1)请建立该水库水位y与日期x之间的函数模型;

(2)请用求出的函数表达式预测该水库今年4月6日的水位;

(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中:线段是轴对称图形,成轴对称的两个图形对称点的连线互相平行,等腰三角形的角平分线就是底边的垂直平分线,已知两腰就能确定等腰三角形的形状和大小,正确的有( ) .

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.
(Ⅰ)若点M的坐标为(1,﹣1),
①当点F的坐标为(1,1)时,如图,求点P的坐标;
②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.
(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在RtABC中,ABC=70.5°,在RtDBC中,DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°0.943,cos70.5°0.334,tan70.5°2.824)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《函数的图象与性质》拓展学习片段展示:

【问题】如图,在平面直角坐标系中,抛物线y=a(x﹣2)2经过原点O,与x轴的另一个交点为A,则a=

【操作】将图中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图.直接写出图象G对应的函数解析式.

【探究】在图中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.

【应用】P是图中图象G上一点,其横坐标为m,连接PD,PE.直接写出PDE的面积不小于1时m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:

月份销售额人员

第1月

第2月

第3月

第4月

第5月

7.2

9.6

9.6

7.8

9.3

5.8

9.7

9.8

5.8

9.9

4

6.2

8.5

9.9

9.9

(1)根据上表中的数据,将下表补充完整:

统计值

数值

人员

平均数(万元)

中位数(万元)

众数(万元)

9.3

9.6

8.2

5.8

7.7

8.5

(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.

(1)判断线段AB与DE的数量关系和位置关系,并说明理由;
(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:
=1- .
将以上三个等式的两边分别相加,得:
=1- =1- .
(1)直接写出计算结果:
+…+ .
(2)仿照 =1- 的形式,猜想并写出: .
(3)解方程: .

查看答案和解析>>

同步练习册答案