精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB=AD=8,A=60°,ADC=150°,四边形ABCD的周长为32.

(1)求∠BDC的度数;

(2)四边形ABCD的面积.

【答案】(1)90°;(2)24+16

【解析】

1)先根据题意得出△ABD是等边三角形BCD是直角三角形进而可求出BDC的度数

2)根据四边形周长计算BCCD即可求△BCD的面积正△ABD的面积根据计算公式计算即可求得四边形ABCD的面积为两个三角形的面积的和

1AB=AD=8cmA=60°,∴△ABD是等边三角形

∵∠ADC=150°,∴∠BDC=150°﹣60°=90°;

2∵△ABD为正三角形AB=8cm∴其面积为××AB×AD=16

BC+CD=3288=16BD=8BD2+CD2=BC2解得BC=10CD=6∴直角△BCD的面积=×6×8=24故四边形ABCD的面积为24+16

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,以BC为半径作⊙B,交AB于点D,交AB的延长线于点E,连接CD、CE.
(1)求证:△ACD∽△AEC;
(2)当 = 时,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B=40°,C=80°,ADBC边上的高,AE平分∠BAC.

(1)求∠BAE的度数;(2)求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是(  )

A. 30 B. 36 C. 72 D. 125

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣ x2+bx+c的图象经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,tanB= ,cosC= ,AC= .求:
(1)BC的长;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠BAD=C=90°,AB=AD=9,AEBCE,AE=8,则CD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE

(1)请判断:AF与BE的数量关系是 , 位置关系是 .
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.

查看答案和解析>>

同步练习册答案