精英家教网 > 初中数学 > 题目详情
精英家教网如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为点M,过点D作DE⊥BC于点E,AC=8,BD=6,则梯形ABCD的高DE=
 
分析:由图可知△ABC与△BCD底边与高都相同面积相等,△ABD与△ACD同样面积相等,可以利用面积公式得到AM与DM,BM与CM之间的关系,由勾股定理得到AD、BC的长度,然后运用梯形面积公式得到DE.
解答:解:
∵S△ABC=S△BCD
∴BD×CM=AC×BM
同理可以得到BD×AM=AC×DM
BM
CM
DM
AM
=
3
4

设BM=3x,CM=4x,DM=3y,AM=4y
∵BD=6,AC=8
∴x+y=2
由勾股定理得AD=5y,BC=5x
∴AD+BC=10
由梯形面积公式得
(AD+BC)×DE
2
=
AC×BD
2
=24
DE=4.8
故答案为4.8.
点评:此题考查勾股定理在图形之中的运用问题,是一道综合性题目,我们应该善于寻找其中的关系,然后转化关系为我们的数学知识来解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案