【题目】在平面直角坐标系xOy中,对于任意两点P1(x1 , y1)与P2(x2 , y2)的“友好距离”,给出如下定义: 若|x1﹣x2|≥|y1﹣y2|,则点P1(x1 , y1)与点P2(x2 , y2)的“友好距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则P1(x1 , y1)与点P2(x2 , y2)的“友好距离”为|y1﹣y2|;
(1)已知点A(﹣ ,0),B为y轴上的动点, ①若点A与B的“友好距离为”3,写出满足条件的B点的坐标: .
②直接写出点A与点B的“友好距离”的最小值 .
(2)已知C点坐标为C(m, m+3)(m<0),D(0,1),求点C与D的“友好距离”的最小值及相应的C点坐标.
【答案】
(1);
(2)∵C(m, m+3),D(0,1),
∴|m|=| m+2|,
∵m<0,
当m≤﹣3时,m= m+2,解得m=6,(舍去);
当﹣3<m<0时,﹣m= m+2,解得m=﹣ ,
∴点C与点D的“友好距离”的最小值为:|m|= ,
此时C(﹣ , ).
【解析】解:(1)①∵B为y轴上的一个动点, ∴设点B的坐标为(0,y).
∵|﹣ ﹣0|= ≠3,
∴|0﹣y|=3,
解得,y=3或y=﹣3;
∴点B的坐标是(0,3)或(0,﹣3);
故填写:(0,3)或(0,﹣3).
②根据题意,得:|﹣ ﹣0|≥|0﹣y|,
即|y|≤ ,
∴点A与点B的“友好距离”的最小值为 .
所以答案是: ;
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )
A.(4,3)
B.(3,4)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1,x2,且满足,求实数p的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用公式法解一元二次方程3x2+3=﹣2x时,首先要确定a、b、c的值,下列叙述正确的是( )
A.a=3,b=2,c=3B.a=﹣3,b=2,c=3
C.a=3,b=2,c=﹣3D.a=3,b=﹣2,c=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算中,错误的运算有( ) ①(2x+y)2=4x2+y2 , ②(a﹣3b)2=a2﹣9b2 ,
③(﹣x﹣y)2=x2﹣2xy+y2 , ④(x﹣ )2=x2﹣2x+ .
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:
AQI指数 | 质量等级 | 天数(天) |
0﹣50 | 优 | m |
51﹣100 | 良 | 44 |
101﹣150 | 轻度污染 | n |
151﹣200 | 中度污染 | 4 |
201﹣300 | 重度污染 | 2 |
300以上 | 严重污染 | 2 |
(1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:
①学校数量2007年~2012年比2001~2006年更稳定;
②在校学生人数有两次连续下降,两次连续增长的变化过程;
③2009年的大于1000;
④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.
其中,正确的结论是( )
A.①②③④ B.①②③ C.①② D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com