精英家教网 > 初中数学 > 题目详情

【题目】有一面积为5 的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为

【答案】20 或20
【解析】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,
作BD⊥AC于D,∵∠A=30°,
∴BD= AB= a,
a a=5
∴a2=20
∴△ABC的腰长为边的正方形的面积为20
如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,
∵AB=AC,
∴∠ABC=∠C=30°,
∴∠BAC=120°,∠BAD=60°,
在RT△ABD中,∵∠D=90°,∠BAD=60°,
∴BD= a,
a a=5
∴a2=20,
∴△ABC的腰长为边的正方形的面积为20.
故答案为20 或20.

分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系.

(1)试求y与x之间的函数表达式;(2)设公司试销该产品每天获得的毛利润为S(元),求S与x之间的函数表达式(毛利润=销售总价-成本总价);
(2)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?
(3)最大毛利润是多少?此时每天的销售量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.

(1)若某月用水量为18立方米,则应交水费多少元?

(2)求当x18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),yx之间的函数图象如图所示

1)求甲车从A地到达B地的行驶时间;

2)求甲车返回时yx之间的函数关系式,并写出自变量x的取值范围;

3)求乙车到达A地时甲车距A地的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是(  )
A.1或2
B.2或3
C.3或4
D.4或5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司引进AB两种机器人用来搬运某种货物这两种机器人充满电后可以连续搬运5小时A种机器人于某日0时开始搬运过了1小时B种机器人也开始搬运如图线段OG表示A种机器人的搬运量yA(千克)与时间x()的函数图象根据图象提供的信息解答下列问题

(1)yB关于x的函数解析式;

(2)如果AB两种机器人连续搬运5小时那么B种机器人比A种机器人多搬运了多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EABCD的边CD的中点,延长AEBC的延长线于点F.

(1)求证:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,ABACBC6.点P射线BA上一点,点Q是AC的延长线上一点,且BPCQ,连接PQ,与直线BC相交于点D.

(1)如图①,当点P为AB的中点时,求CD的长;

(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示EFGH分别是四边形ABCD的边ABBCCDAD的中点

(1)当四边形ABCD是矩形时四边形EFGH是_________请说明理由;

(2)当四边形ABCD满足什么条件时四边形EFGH为正方形?并说明理由

查看答案和解析>>

同步练习册答案