精英家教网 > 初中数学 > 题目详情
11.如图,将一个边长分别为4cm、8cm的矩形纸片ABCD折叠,使C点与A点重合,则EB的长是(  )
A.3cmB.4cmC.2cmD.5cm

分析 设BE=x,则CE=AE=8-x,在Rt△ABE中,由勾股定理求出x的值即可.

解答 解:设BE=x,则CE=AE=8-x,
在Rt△ABE中,AB2+BE2=AE2
即42+x2=(8-x)2
解得x=3cm,
即EB的长是3cm.
故选:A.

点评 本题考查的是翻折变换,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.(1)先化简,再求值:$\frac{{x}^{2}}{x-1}$÷(1+$\frac{1}{{x}^{2}-1}$),其中x=2017.
(2)已知方程x2-2x+m-3=0有两个相等的实数根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在△ABC中,∠ACB=90°,AC=1,BC=2$\sqrt{3}$,以AB为边向左作菱形ABDE,使∠BAE=60°,AD,BE相交于点O,则CO的长是(  )
A.$\frac{5}{2}$B.3C.$\frac{9}{4}$D.$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点(1,1).(-2,-2).($\sqrt{3}$,$\sqrt{3}$),…,都是等值点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个等值点($\frac{3}{4}$,$\frac{3}{4}$),且当m≤x≤3时,函数y=ax2+4x+c-$\frac{15}{8}$(a≠0)的最小值为-9,最大值为-1,则m的取值范围是-1≤m≤1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:(-2)3×$\sqrt{\frac{1}{64}}$+|$\root{3}{-8}$+$\sqrt{2}$|+$\sqrt{2}$×(-1)2018

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.
(1)若该一元二次方程有实数根,求m的取值范围;
(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图所示,点P与点P′是一对对应点,若点P的坐标为(a,b),则点P′的坐标为(  )
A.(b+3,a)B.(b,3-a)C.(a-3,-b)D.(3-a,-b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台,试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.
(1)第四个月销量占总销量的百分比是30%;
(2)求第三个月B品牌电视机月销量;
(3)为跟踪调查电视机的使用情况,从该商店第二个月售出的电视机中,随机抽取一台,求抽取到B品牌电视机的概率;
(4)请你结合折线的走势来判断该商店应经销哪个品牌的电视机?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在直线l上有三个点A、B、C,AB=5,BC=3,那么AC=8或2.

查看答案和解析>>

同步练习册答案