精英家教网 > 初中数学 > 题目详情
阅读下列解答过程,然后回答问题.已知多项式x3+4x2+mx+5有一个因式(x+1),求m的值.
解法一:设另一个因式为(x2+ax+b),则x3+4x2+mx+5=(x+1)(x2+ax+b)=x2+(a+1)x2+(a+b)x+b,
∴a+1=4,a+b=m,b=5,∴a=3,b=5,∴m=8;
解法二:令x+1=0得x=-1,即当x=-1时,原多项式为零,
∴(-1)3+4×(-1)2+m×(-1)+5=0,∴m=8
用以上两种解法之一解答问题:若x3+3x2-3x+k有一个因式是x+1,求k的值.
分析:首先正确理解题目种的两种解法,然后可以结合两种解法的思路就可以求出k的值.
解答:解:∵多项式x3+4x2+mx+5有一个因式(x+1),
∴令x+1=0得x=-1,即当x=-1时,原多项式为零,
∴(-1)3+3×(-1)2-3×(-1)+k=0,
∴k=-5.
点评:此题主要考查了因式定理与综合除法,解题的关键首先正确理解题意,然后利用题目的思想和方法就可以解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读下列解题过程,然后解题:
题目:已知
x
a-b
=
y
b-c
=
z
c-a
(a、b、c互不相等),求x+y+z的值.
解:设
x
a-b
=
y
b-c
=
z
c-a
=k
,则x=k(a-b),y=k(b-c),z=k(c-a),
∴x+y+z=k(a-b+b-c+c-a)=k•0=0,∴x+y+z=0.
依照上述方法解答下列问题:
已知:
y+z
x
=
z+x
y
=
x+y
z
,其中x+y+z≠0,求
x+y-z
x+y+z
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

先阅读下列解题过程,然后解答问题(1)、(2)
解方程:|x+3|=2.
解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1;
当x+3<0时,原方程可化为:x+3=-2,解得x=-5.
所以原方程的解是x=-1,x=-5.
(1)解方程:|3x-2|-4=0;
(2)探究:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列解题过程,然后解答问题(1)、(2)、(3).
例:解绝对值方程:|2x|=1.
解:讨论:①当x≥0时,原方程可化为2x=1,它的解是x=
1
2

②当x<0时,原方程可化为-2x=1,它的解是x=-
1
2

∴原方程的解为x=
1
2
和-
1
2

问题(1):依例题的解法,方程|
1
2
x|
=3的解是
x=6和-6
x=6和-6

问题(2):尝试解绝对值方程:2|x-2|=6;
问题(3):在理解绝对值方程解法的基础上,解方程:|x-2|+|x-1|=3.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列解题过程,然后解答问题(1)、(2)解方程:|3x|=1
解:①当3x≥0时,原方程可化为一元一次方程为3x=1,它的解是x=
1
3
②当3x<0时,原方程可化为一元一次方程为-3x=1,它的解是x=-
1
3

(1)请你模仿上面例题的解法,解方程:2|x-3|+5=13
(2)探究:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.

查看答案和解析>>

同步练习册答案